IOWA STATE UNIVERSITY Digital Repository

Retrospective Theses and Dissertations

Iowa State University Capstones, Theses and Dissertations

1979

X-ray excited optical luminescence of polynuclear aromatic hydrocarbons

Gregory Joseph Oestreich Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Analytical Chemistry Commons

Recommended Citation

Oestreich, Gregory Joseph, "X-ray excited optical luminescence of polynuclear aromatic hydrocarbons" (1979). Retrospective Theses and Dissertations. 6616.

https://lib.dr.iastate.edu/rtd/6616

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.

INFORMATION TO USERS

This was produced from a copy of a document sent to us for microfilming. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the material submitted.

The following explanation of techniques is provided to help you understand markings or notations which may appear on this reproduction.

- 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure you of complete continuity.
- 2. When an image on the film is obliterated with a round black mark it is an indication that the film inspector noticed either blurred copy because of movement during exposure, or duplicate copy. Unless we meant to delete copyrighted materials that should not have been filmed, you will find a good image of the page in the adjacent frame.
- 3. When a map, drawing or chart, etc., is part of the material being photographed the photographer has followed a definite method in "sectioning" the material. It is customary to begin filming at the upper left hand corner of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again—beginning below the first row and continuing on until complete.
- 4. For any illustrations that cannot be reproduced satisfactorily by xerography, photographic prints can be purchased at additional cost and tipped into your xerographic copy. Requests can be made to our Dissertations Customer Services Department.
- 5. Some pages in any document may have indistinct print. In all cases we have filmed the best available copy.

University
Microfilms
International

300 N. ZEEB ROAD, ANN ARBOR, MI 48106 18 BEDFORD ROW, LONDON WC1R 4EJ, ENGLAND

7916208

DESTREICH, GREGORY JOSEPH X-RAY EXCITED OPTICAL LUMINESCENCE OF POLYNUCLEAR AROMATIC HYDROCARBONS.

a grand to the transfer of the first of th

IOWA STATE UNIVERSITY, PH.D., 1979

University
Microfilms
International 300 N. ZEEB ROAD, ANN ARBOR, MI 48106

PLEASE NOTE:

In all cases this material has been filmed in the best possible way from the available copy. Problems encountered with this document have been identified here with a check mark ____.

1.	Glossy photographs
2.	Colored illustrations
3.	Photographs with dark background
4.	Illustrations are poor copy
5.	Print shows through as there is text on both sides of page
6.	Indistinct, broken or small print on several pages throughout
7.	Tightly bound copy with print lost in spine
8.	Computer printout pages with indistinct print
9.	Page(s)lacking when material received, and not available from school or author
10.	Page(s) seem to be missing in numbering only as text follows
11.	Poor carbon copy
12.	Not original copy, several pages with blurred type
13.	Appendix pages are poor copy
14.	Original copy with light type
15.	Curling and wrinkled pages
16.	Other

University Microfilms International

X-ray excited optical luminescence of polynuclear aromatic hydrocarbons

by

Gregory Joseph Oestreich

A Dissertation Submitted to the

Graduate Faculty in Partial Fulfillment of

The Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Department: Chemistry
Major: Analytical Chemistry

Approved:

Signature was redacted for privacy.

In Charge of Major Work

Signature was redacted for privacy.

For the Major Department

Signature was redacted for privacy.

For the Graduate College

Iowa State University Ames, Iowa

TABLE OF CONTENTS

	Page
CHAPTER 1: INTRODUCTION	1
CHAPTER 2: FACILITIES	11
Experimental Facilities	11
Computational Facilities	19
CHAPTER 3: PULSED XEOL SYSTEM	23
X-ray Pulse Generation	26
Refrigeration and Optical Systems	31
Data Acquisition System	35
Data Analysis	37
X-ray Pulse Characteristics	40
CEAPTER 4: EXPERIMENTAL PROCEDURES	42
Preparation of Chemicals, Solvents and Solutions	42
Time Resolved Spectroscopy	44
Fluorescence Measurements	48
CHAPTER 5: RESULTS AND DISCUSSION	5 1
Decay Constant Values	51
Mixture Analysis by Time Resolution	54
Single Component Analysis by Fluorescence	67
Discussion and Conclusions	69
CHAPTER 6: MISCELLANEOUS OBSERVATIONS AND FUTURE WORK	72
Pulsed XEOL System Modifications	72
Solvent Composition	75
Other Systems Amenable to Study by XEOL	86

ili

BIBLIOGRA	BIBLIOGRAPHY		
ACKNOWLE	DGM:	ENTS	96
AFPENDIX	1:	TRS3	97
APPENDIX	2:	SMASH	102
AFPENDIX	3:	GENPLOT	115
AFPENDIX	4:	TRSGJO	119
AFPENDIX	5:	JCL	149
AFPENDIX	6:	EXECTRS3	151

LIST OF TABLES

			Page
Table	1.	Principal Components of Pulsed XEOL System	14
Table	2.	Interface Instructions	19
Table	3.	Polynuclear Aromatic Hydrocarbons	43
Table	4.	Stepwise Preparation of Pulsed XEOL System	46
Table	5.	Minicomputer Operation	47
Table	6.	Normalization Factors	49
Table	7.	Five Day Determination of Decay Constants	52
Table	8.	Decay Constant Statistics	52
Table	9.	Concentration Dependence of Decay Constants	53
Table	10.	Comparison of XEOL and Published Decay Constants	56
Table	11.	Decay Constants, Lifetimes and Half Lives of PAH's	56
Table	12.	Analytical Data from XEOL-TRS Analysis	67
Table	13.	Fluorescence Data from Pulsed XEOL Analysis	68
Table	14.	External Heavy Atom Effect on PAH Emission	8 7

LIST OF FIGURES

			Page
Figure	1.	Energy level diagram for a n-alkane-PAH system at 10 K. The numbered transitions are; 1. Formation of the primary photo-electron, 2. Collisional population of molecular exciton bands, 3. Exciton trapped by perturbed host molecule, 4. Recombination, 5. Internal conversion followed by vibrational deactivation, 6. Intersystem crossing, 7. Fluorescence and 8. Phosphorescence.	6
Figure	2.	Photograph of the pulsed XEOL system with the cryostat removed from the vacuum shield. The numbered components are: 1. cryostat (cold end), 2. sample holder, 3. ball bushing and bearing assembly, 4. radiation shield, 5. vacuum shield and 6. monochromator.	12
Figure	3.	Photograph of the pulsed XEOL system with the cryostat inserted into the vacuum shield. The numbered components are; 1. monochromator, 2. photomultiplier tube in housing, 3. brass sample chamber, 4. vacuum shield, 5. vacuum line, 6. x-ray tube and 7. cryostat (mechanical end).	13
Figure	4.	Simplified circuit diagram of the control interface. Interface commands are indicated in parentheses.	17
Figure	5.	Simplified circuit diagram of the circuit used to generate timing reference pulses.	18
Figure	6.	Simplified circuit diagram of the gated integrator. Control instructions are indicated in parentheses.	20
Figure	7.	Block diagram of the pulsed x-ray excited optical luminescence system.	24

riguie	0•	signal produced by a photomultiplier tube in response to a fast scintillator (perylene in n-heptane) excited by a DC x-ray source. Horizontal scale is 10 msec./cm. and vertical scale is 2 volts/cm.	21
Figure	9.	Timing diagram which illustrates the time relationship and sequence of events in the production of a typical x-ray pulse.	30
Figure	10.	Sample holder used with the pulsed XEOL system. Main body and retaining rings were fabricated from oxygen free high conductivity (OFHC) copper.	32
Figure	11.	A schematic diagram of the optical system designed around the crossed Czerny-Turner mount of the McPherson monochromator used in the pulsed XEOL system.	34
Figure	12.	Time resolution of the phosphorescence emission from a mixture of triphenylene and phenanthrene in n-heptane by use of the pulsed XEOL technique.	55
Figure	13.	Time resolution of the phosphorescence emission from a mixture of triphenylene and chrysene in n-heptane by use of the pulsed XEOL technique.	57
Figure	14a.	Linear plot of intensity versus molar concentration for triphenylene.	60
Figure	14b.	Logarithmic plot of intensity versus molar concentration for triphenylene.	60
Figure	15a.	Linear plot of intensity versus molar concentration for coronene.	61
Figure	15b.	Logarithmic plot of intensity versus molar concentration for coronene.	61
Figure	16a.	Linear plot of intensity versus molar concentration for chrysene.	62
Figure	16b.	Logarithmic plot of intensity versus molar concentration for chrysene.	62

Figure	17a.	Linear plot of intensity versus molar concentration for phenanthrene.	63
Figure	17b.	Logarithmic plot of intensity versus molar concentration for phenanthrene.	63
Figure	18a.	Linear plot of intensity versus molar concentration for fluoranthene.	64
Figure	18b.	Logarithmic plot of intensity versus molar concentration for fluoranthene.	64
Figure	19.	Measured intensity as a function of the current of the electron beam used to produce the x-ray pulse.	76
Figure	20.	Measured intensity as a function of the acceleration voltage experienced by the electron beam used to produce the x-ray pulse.	77
Figure	21.	Measured intensity as a function of the duration of the x-ray pulse.	7 8
Figure	22.	XEOL spectrum of anthracene in n-hexane at a concentration of 1 X 10-4 M.	80
Figure	23.	XEOL spectrum of anthracene in n-heptane at a concentration of 1 X 10-4 M.	81
Figure	24.	XEOL spectrum of anthracene in n-octane at a concentration of 1 X 10- M.	82
Figure	25.	XEOL spectrum of 3,4-benzopyrene in n-hexane at a concentration of 1 x 10-4 M.	83
Figure	26.	XEOL spectrum of 3,4-benzopyrene in n-heptane at a concentration of 1 X 10-4 M.	84
Figure	27.	XEOL spectrum of 3,4-benzopyrene in n-octane at a concentration of 1 x 10-4 M.	85
Figure	28.	XEOL spectrum of solid argon deposited on a beryllium window at 10 K from a flowing gas stream.	88

Figure	29.	on a beryllium window at 10 K from a flowing gas stream.	90
Figure	30.	XEOL spectrum of solid xenon deposited on a beryllium window at 10 K from a flowing gas stream.	91

CHAPTER 1: INTRODUCTION

The search for cancer-causing agents began in 1775 when physicians observed an abnormally high occurrence of cancer of the scrotum in chimney sweeps. Today, the carcinogenic and mutagenic properties of polynuclear aromatic hydrocarbons (PAHs), a major component of soot, are well known (1,2). All humans are exposed to many natural and man made sources of PAHs. These compounds are produced in hydrocarbon-fueled combustion processes, both natural (e.g. forest fires (3)) and controlled (e.g. internal combustion engines, (4) fuel-rich flames (5)). In addition to the many existing sources of PAHs, the dwindling supply of petroleum threatens to add another source of PAHs, as coal becomes an energy substitute. PAHs occur in coal tar pitch (6,7), in the environment surrounding coke production (8), in coal conversion processes (9), in coal liquification products (10-12), and even in coal (13).

Once formed, the PAHs can enter the atmosphere and the food chain. The modern coal-burning power plant is one example of a particularly dangerous source of atmospheric PAHs. The PAHs formed in the combustion process enter the atmosphere as gases and subsequently condense on the particulate matter formed in the boiler (14) and finally escape into the environment by being immobilized on the very fine particulate matter not removed by precipitators. In this

form the PAHs are inhaled deeply into the lungs and become imbedded in tissue. The localized concentrations of PAHs in the lung tissues represents a serious health hazard. PAHs also enter the body during the consumption of nourishment and water. Fresh water supplies contain PAHs in the range from 1 part per trillion in ground water to 100 parts per trillion and higher in industrially-polluted surface water (15,16). Certain foods contain large quantities of PAHs. Smoked and charcoal broiled foods have been shown to be dietary sources of PAHs. In one study the content of PAHs ranged from 0 to 141 part per hillion in smoked foods and from 0 to 164 part per billion in charcoal broiled foods (17). In a more general study PAHs were found at trace levels in meat, fish, poultry, root vegetables, beverages, dairy products, oils, fats and shortenings (18). The occurrence of PAHs in the diet is an important source of human exposure to carcinogenic substances.

The many different sources and the varied composition of PAH-contaminated materials presents the analytical chemist with a serious problem. Sensitive and selective analytical methods for the characterization of PAHs are required. For these reasons and because of the potentially hazardous exposure of humans to PAHs in industrial (19) and natural environments, there is increasing interest in new analytical concepts for the qualitative and quantitative determination

of these compounds at trace and ultratrace levels (20).

PAHs occur in natural and man-made substances at trace and ultratrace levels in complex matrices (21-24,18). Therefore, sensitive and selective analytical techniques are required to characterize PAH mixtures. Because PAHs are highly luminescent materials (25,26), fluorimetric and phosphorimetric methods are favored for PAH characterization. Unfortunately, broad-band emission of most PAH systems prevents the simultaneous determination of several PAHs and limits the selectivity of luminescent methods.

To improve the selectivity of the luminescent methods for PAH systems, solid state techniques are often used. Two approaches for sharpening the luminescent emission are line-narrowing fluorescence spectroscopy (27,28) and mixed-crystal spectroscopy (29,30,31). Line-narrowing fluorescence spectroscopy employs a laser to excite only those PAH molecules in a particular environment within a low temperature matrix (e.g. glass, crystal or Shpol'skii). Molecules with vibrational levels in the first singlet electronic state which coincide with the laser frequency are excited. After vibrational deactivation these molecules are in equal energy excited states and fluoresce in a narrow frequency range. This technique has been demonstrated with an argon ion laser for anthracene and pyrene (32). Greatly improved selectivity should be possible with a tunable dye

laser in place of the argon ion laser. The second approach requires choice of a solvent or matrix in which the PAHs can reside in a few particular orientations. If PAHs are dissolved in n-alkanes (pentane to nonane) and the resulting solutions are cooled to a temperature in the range of 4 K to 77 K. narrow-lined emission is observed under UV excitation. The impurity PAH molecules in the n-alkane host are held in substitutional sites and lattice broadening of their emission is not observed. These quasilinear spectra are a manifestation of the Shpol'skii effect (33-35). A review of the Shpol'skii effect (36) summarizes the systems which display this behavior. The variety of systems listed suggests the phenomena is quite common. The application of the Shpol'skii effect, excited by UV radiation, to the determination of 3,4-henzopyrene, a potent carcinogen, is well-documented (37-40).

The major drawbacks to luminescence analysis using the Shpol*skii effect are instrumental limitations (41).

Scattered radiation from the excitation source is a particularly serious limitation since internal reflection occurs within the n-alkane snows formed upon freezing. The technique known as X-ray Excited Optical Luminescence (XEOL), which employs x-ray excitation, eliminates the problem of crosstalk between emission from the excitation source and luminescenct emission from the sample. The conventional

sources (e.g. lasers, mercury lamps, xenon arcs etc.) (42) are replaced by an x-ray tube. XEOL is a sensitive analytical technique capable of detecting impurities at the fractional part per billion level in appropriate solid or gaseous environments (43,44). In an earlier publication (45) we reported the first observation of the Shpol'skii effect from PAHs in n-alkanes under x-ray excitation. The observation of quasilinear fluorescence and phosphorescence of PAHs under x-ray excitation suggested the combination of XEOL and the Shpol'skii effect might be a viable approach to the simultaneous multicomponent determination of complex PAH mixtures.

Another advantage gained by combining the Shpol'skii effect and XEOL is nonspecific excitation of the sample. The coincidence of the absorption band of the PAH molecule and the emission frequency of the excitation source is not a requirement because resonance processes are not responsible for direct excitation of the PAH molecules. Instead, highly selective energy transfer processes are responsible for the sensitized luminescence which is observed from trace PAHs contained in n-alkane microcrystals (45). The observation of sensitized luminescence indicates XEOL should be a sensitive method for the determination of PAHs in Shpol'skii matrices.

To visualize the processes which occur in the proposed excitation mechanism, an energy level diagram of the

Figure 1. Energy level diagram for a n-alkane-PAH system at 10 K. The numbered transitions are; 1. Formation of the primary photoelectron, 2. Collisional population of molecular exciton bands, 3. Exciton trapped by perturbed host molecule, 4. Recombination, 5. Internal conversion followed by vibrational deactivation, 6. Intersystem crossing, 7. Fluorescence and 8. Phosphorescence.

n-alkane-PAH system at 10 K is presented in Figure 1. An explanation of the excitation mechanism begins with the energy levels of the free host molecule on the left side of Figure 1. The ground state, first two excited singlet electronic states, and the ionization limit are shown. To simplify the diagram, the vibrational levels were not drawn. In the solid state, the ground state and the ionization limit of the free host molecule are analogous to the valence and conduction bands of an ionic crystal. The singlet electronic states of the free host molecule broaden into molecular exciton bands which are characteristic of a molecular assembly of many host molecules. These molecular exciton bands are the transmission lines of the excitation energy. The perturbation exerted by an impurity molecule on neighboring host molecules results in the formation of host secondary trapping sites, shown in the mixed crystal region of the diagram. These perturbed host wolecules are important in the selective capture of excitons by the impurity molecules. Finally, on the right side of Figure 1 the energy levels of a typical PAH are depicted as discrete states. The use of a Shpol'skii solvent traps the PAHs in identical environments in the crystal lattice and prevents broadening of the singlet and triplet excited electronic states. The observed optical signal is a composite of fluorescence and phosphorescence transitions of PAH molecules trapped in the

lattice.

The first step in the excitation mechanism is the interaction of x-ray photons with the sample or the sample holder. X-ray photons interact with matter in three ways; 1. Photoelectric effect, 2. Compton effect and 3. Pair production (46,47). At the energies used in XEOL experiments (typically 60 kV.) only the photoelectric effect occurs. Atoms of the solvent or sample holder may absorb an x-ray photon and eject a primary photoelectron with energy in excess of several keV. (process No. 1 in Figure 1). The excited atoms relax by the emission of characteristic fluorescence x-rays or the ejection of Auger electrons. The primary photoelectron, fluorescent x-rays and the Auger electrons collisionally excite neighboring atoms in a cascade process.

The collisional excitation of electrons and atoms of host molecules populates the molecular exciton bands (process No. 2 in Figure 1). The exciton wave migrates through the molecular assembly and the excitation is delocalized (31). As the exciton propagates through the microcrystal it may enter a region in which an impurity molecule is trapped in the lattice. If the exciton migrates to a perturbed host molecule a phonon is produced and the exciton no longer possesses enough energy to migrate freely in the microcrystal. The exciton continues toward the impurity with the production of

additional phonons (process No. 3 in Figure 1) until the impurity traps the excitor and is excited electronically or ionized. The inability of the exciton to return to the bulk of the crystal after the production of phonons near the impurity sites results in the funneling of excitation energy to the impurity. Recombination, internal conversion and intersystem crossing with vibrational deactivation (processes No. 4, 5 and 6 in Figure 1) occur in the impurity.

Fluorescence (process No. 7 in Figure 1) and phosphorescence (process No. 8 in Figure 1) return the PAH molecule to the ground state. Thus, the highly selective energy transfer processes produce the optical signal.

The sharp line spectra resulting from the Shpol*skii effect make spectral resolution of several PAHs possible and endow the XEOL technique with some selectivity. However, no monochromator is capable of resolving all lines. Even with the Shpol*skii effect, overlap occurs in the fluorescent and phosphorescent emission of PAHs. Time resolved spectroscopy (TRS) coupled with XEOL would further improve the selectivity of the method. The technique of time resolved spectroscopy (48-50) allows separation of overlapping luminescence of PAHs on the basis of their luminescent decay constants. Since PAHs possess a large range of fluorescent and phosphorescent decay constants (26), it should be possible to time resolve fluorescent components and phosphorescent components. A

pulsed excitation source is required to perform the time resolution experiment. Before coupling XEOL and TRS a pulsed x-ray source has to be constructed.

This dissertation describes the development of XEOL-TRS as a method for the analysis of PAHs. The modification of a medical x-ray unit for use as a pulsed x-ray source under computer control is discussed. The ability to time resolve phosphorescent mixtures but not fluorescent mixtures because of x-ray pulse characteristics is reported. Finally, analytical data is presented on the analysis of synthetic PAH mixtures and other systems that might be amenable to study by the XEOL-TRS technique are suggested.

CHAPTER 2: FACILITIES

Experimental Facilities

The experimental facilities, used as basic components in a simple XEOL system, are described in an early publication (51). The basic components plus the additional components of the pulsed XEOL system used in the present study are summarized in Table 1.

In Figures 2 and 3 the essential hardware portions of the pulsed XEOL system are numbered for easy identification. The brass sample chamber, used to shield the operator from scattered x-rays, was redesigned for this system. All seams in the brass structure were fitted with right angle slots to eliminate streaming of scattered x-rays through conventional seams. A reproducible mount for the cryogenic vacuum shield was fitted on top of the chamber. A table, to which the chamber was securely fastened, was added to support a ball bushing and bearing assembly for easy insertion and extraction of the cryogenic system into and out of the vacuum shield. Figure 2 shows the cryogenic system removed from the vacuum shield. The table has three-dimensional adjustments to simplify optical alignment of the system. Optical alignment was performed using a continuous wave He-Ne laser with emission at 632.8 nm. (C. W. Radiation Inc. Mountain View, CA). The sides of the brass box are easily removed and

Figure 2. Photograph of the pulsed XEOL system with the cryostat removed from the vacuum shield. The numbered components are: 1. cryostat (cold end), 2. sample holder, 3. ball bushing and bearing assembly, 4. radiation shield, 5. vacuum shield and 6. monochromator.

Figure 3. Photograph of the pulsed XEOI system with the cryostat inserted into the vacuum shield. The numbered components are: 1. monochromator, 2. photomultiplier tube in housing, 3. brass sample chamber, 4. vacuum shield, 5. vacuum line, 6. x-ray tube and 7. cryostat (mechanical end).

Table 1. Principal Components of Pulsed XEOL System

X-ray Sources

DC x-ray power supply Operated at 50 kV. and 40 mA.

Water cooled

Maximum 60 kV. 60 mA. (General Electric Corp., Milwaukee, WI Model XRD-6)

DC x-ray tube Tungsten target

Water cooled anode

Emission of x-rays from 0.1 nm. to 0.02 nm. (General Electric Corp.,

(General Electric Corp., Milwaukee, WI Model EA-75X)

Pulsed x-ray power supply Medical x-ray unit

Thyratron pulse circuits

modified for computer control (Westinghouse Electric Corp.,

Greenville, PA)

Pulsed x-ray tube Medical x-ray tube

Operated at 60 kV. 100 mA.

using large filament

Rotating anode Conduction cooled

(The Machlett Laboratories

Inc., Stamford, CT)

Spectroscopic Equipment

Monochromator Scanning 0.3 meter

Crossed Czerny Turner mount (McPherson Instrument Corp., Acton, MA, Model No. 218)

Detector EMI 6256B photomultiplier

S-13 response

(EMI Gencom Inc., Plainview,

NY)

High voltage power supply Operated at 1200 VDC

(NJE Corp., Kenilworth, NJ,

Nodel S-325)

Table 1. (Continued)

External optics Precision grade quartz lens

1 inch diameter
2 inch focal length
(Corion Instrument Corp.,

Waltham, MA)

Amplifier Fast current amplifier with

adjustable rise time and

zero suppression

(Keithley Instruments, Cleveland, OH, Model 427)

Recorder Two pen voltage recorder

(Houston Instruments, Austin,

TX, Model 5210-5)

Refrigeration and Vacuum Equipment

Helium refrigerator Helium refrigerant

Temperature selectable from 10 K to 360 K with 1 degree

resolution

(Air Products and Chemicals

Inc., Allentown, PA,

Model CSA-202)

Diffusion pump 2 inch air cooled

(NRC Equipment Co., Newton,

MA)

Floor pump (The Welch Scientific Co.,

Skokie, IL, Model 1397)

Vacuum gauge (National Research Corp.,

Cambridge, MA)

Computer and Interfaces

Computer PDP8/E minicomputer

(Digital Equipment Corp.,

Maynard, MA)

Control interface See text

Data interface (Heath Co., Benton Harbor,

MI)

Table 1. (Continued)			
Buffer	(Heath Co., Benton Harbor, MI)		
Analog to Digital Converter	(Redcor Corp., Woodland Hills CA)		
Teletype	(Teletype Corp., Skokie, IL, Model-33)		

replaced to accommodate either a DC or pulsed x-ray tube. The x-ray tubes are positioned to minimize the distance from the anode to the vacuum, because air can severely attenuate the x-ray beam. Figure 3 shows the brass chamber with the pulsed x-ray tube attached and the refrigerator inserted.

The control interface was designed by G. Holland of Ames Laboratory Instrumentation Group and built by technicians in the same group. A simplified circuit diagram of the interface is presented in Figure 4. The interface instructions which control the operation of the x-ray source are indicated on the diagram. The flip flops are equivalent to toggle switches. The AND gates test two computer conditions before allowing pulses to reach the x-ray supply. A second circuit in the control interface generates timing pulses from the line voltage. The simplified circuit is drawn in Figure 5. The two operational amplifiers act as comparators. The voltage dividers, connected to the noninverting inputs, are used to fine tune the phase relationship between the x-ray

Figure 4. Simplified circuit diagram of the control interface. Interface commands are indicated in parentheses.

Figure 5. Simplified circuit diagram of the circuit used to generate timing reference pulses.

supply and the timing pulses. The gated integrator, also designed by G. Holland, is an operational amplifier with a feedback capacitor and several input resistors. The circuit board is contained in the control interface chassis. The simplified circuit is drawn in Figure 6. Three input resistances were included to attenuate the input voltage. The integrator is operated with two interface instructions shown on the diagram. All interface instructions, their octal values and functions are summarized in Table 2.

Table 2. Interface Instructions

<u>Instruction</u>	<u>Octal Value</u>	<u>Function</u>
CREADY	6337	Enable control interface
CREADY	6331	Open communication lines
CWAIT	6336	Close communication lines
MOM	6332	Timing pulse
ROTRON	6341	Turn Lotor on
FOTROF	6342	Turn rotor off
XABLE	6343	Enable x-ray supply
XDABLE	6344	Disable x-ray supply
XON	6333	Turn x-rays on
XOFF	6334	Turn x-rays off
INBOX	6346	Initialize integrator
STBOX	6345	Start integrator
GETDAT	6354	Transfer data
STATOD	645 5	Start A to D conversion
INATOD	6455	Initialize A to D converter

Computational Pacilities

The data, produced by the pulsed XEOL system, is processed by PL/1 and FORTRAN IV programs. These programs are

Figure 6. Simplified circuit diagram of the gated integrator. Control instructions are indicated in parentheses.

executed on the IBM 360/65 and ITEL AS/5 computers in the Iowa State University Computation Center. The PL/1 program was written to plot decay curve data using Simplotter (52) and to produce an input data set in the proper format for the FORTRAN IV program, called SMASH (53). SMASH was developed by the neutron activation analysis group at Ames Laboratory to separate complex decay curves and was modified for the present study to handle spectroscopic data. Listings of the PL/1 and SMASH programs appear in Appendix 1 and Appendix 2 respectively.

A conversational system, known as WYLBUR, makes operator interaction with the data processing system possible. WYLBUR was accessed over telephone lines located in our research area. A Decwriter II (Digital Equipment Corp. Maynard, MA) and Teletype (Teletype Corp., Skokie, IL, Nodel 35) were the devices used to communicate instructions to WYLBUR. WYLBUR is a text editing program with remote job entry and execute file capabilities supported by the Iowa State University

Computation Center. The text editing features facilitate program writing and the remote job entry feature simplifies the debugging process. After the paper tape data set is transferred to the computer system, a WYLBUR execute file is used to generate a control data set for the PL/1 program and to create a system job composed of job control language, program listings and data. WYLBUR submits the job to the

system and the results are printed in the computation center.

Another facility available at the Iowa State University Computation Center for displaying graphical data is Simplotter. Simplotter is a FORTRAN program, developed at Ames Laboratory, for general plotting requirements. Simplotter was used to display decay curves, calibration curves and other general data. A PL/1 program was written to access Simplotter directly to plot simple data sets while WYLBUR was used to generate the data set with the proper format. A listing of the WYLBUR execute file and PL/1 program is given in Appendix 3.

The computational facilities, available through the Iowa State University Computation Center, made the time resolution experiment possible. The separation of complex decay curves by a least squares method using a digital computer is a routine exercise. Without the least squares method we would have limited our resolution to simple two-component systems because graphical methods would have been employed. Our ability to use mathematical techniques, such as the SMASH routine, made it possible to extend time-resolved spectroscopy to mixtures with more than three components.

CHAPTER 3: PULSED XEOL SYSTEM

The pulsed x-ray excited optical luminescence system is shown as a block diagram in Figure 7. At the heart of the system is a dedicated minicomputer. The stringent timing requirements for x-ray pulse generation and the careful measurement of integration periods during data acquisition required the use of a dedicated computer. Human interaction with the system occurs at the teletype where input is typed at the keyboard and output is generated at the punch as paper tape. The assembly language program which generates the x-ray pulse, controls the data acquisition system and handles input and output information is listed in Appendix 4.

The computer interacts with the system through two interfaces. The data interface is used to transfer digital data from the analog-to-digital converter to the computer memory where it is stored until output is punched. The control interface connects the computer, the x-ray supply and the integrator. Timing reference pulses are produced in the control interface.

The excitation source in the luminescence system is a modified medical x-ray unit. The x-ray supply can produce a maximum voltage of 150 kV. across the x-ray tube and a maximum current of 300 mA. through the x-ray tube. The x-ray tube is a rotating anode, medical x-ray tube which is cooled by conduction.

Figure 7. Block diagram of the pulsed x-ray excited optical luminescence system.

Three control signals are required to pulse the x-ray source. First, the rotating anode must be started. The rapid rate of rotation prevents excessive heating of localized areas of the anode surface and subsequent sputtering and pitting. Next the x-ray supply must be enabled. Under normal operation the enable function would produce x-rays. Finally, a gate pulse signals the power supply to release the thyratron switches and activate the x-ray tube for the duration of the pulse.

During the on period of the x-ray pulse, the sample, typically PAHs dissolved in n-heptane at 10 K, is excited. At termination of the x-ray pulse some initial activity exists and decays exponentially. The emission is collected by a lens, dispersed with a monochromator and detected by a photomultiplier tube. The photomultiplier tube current is amplified by a fast response (typically 1-10 msec.) current amplifier and a voltage signal results.

The gated integrator sums the voltage signal for a predetermined period and is reset. Prior to the reset command, the integrator output is sampled and an analog-to-digital conversion is performed. After the integrator is reset the process is repeated until the number of data points, specified by the operator, is obtained. The luminescent decay is characterized by the sequential data points. The timing relationship between the x-ray pulse and

the integration of the voltage signal is precisely controlled by the minicomputer. The digital data are transferred to computer memory where luminescent decay from subsequent x-ray pulses can be added. The signal averaged data are punched on paper tape and analyzed on the Iowa State University Computation Center facilities.

In the following sections detailed explanations of the operation of different phases of the pulsed, x-ray excited, optical luminescence system are presented. The principles of x-ray pulse generation are outlined. The control of the sample temperature and the containment of the sample are described. The data acquisition options are presented and the section on data analysis follows the data after they are punched on paper tape to the final results. Finally, some consequences of the pulsing technique are discussed in the section on x-ray pulse characteristics.

X-ray Pulse Generation

The first attempt to produce an x-ray pulse involved a high voltage grid in the x-ray tube which could deflect the electron beam away from the anode. Before implementing the grid approach, the x-ray emission of the DC supply was characterized. A liquid scintillator was irradiated and the response was observed with an oscilloscope. A typical oscilloscope tracing is depicted in Figure 8. A full-wave

Figure 8. Oscilloscope tracing of the amplifier signal produced by a photomultiplier tube in response to a fast scintillator (perylene in n-heptane) excited by a DC x-ray source. Horizontal scale is 10 msec./cm. and vertical scale is 2 volts/cm.

rectified sine-wave with a frequency of 120 cycles per second was observed. The sine waveform and not a DC level was observed because manufacturers of x-ray equipment do not filter the voltage supply which powers the x-ray tube. The size of the capacitors and resistors that are required to filter kilovolt voltage levels are prohibitive. The switch-selectable voltages and currents on x-ray sources are root-mean-square values and represent the DC average of the waveform. The grid approach was abandoned and advantage was taken of the inherent pulsed nature of a DC x-ray supply. If the medical x-ray supply could be turned on at a zero point in the waveform and off at a later zero point, an x-ray pulse which is a multiple of 1/120th of a second in length could be produced.

To generate such an x-ray pulse required precise determination of zero points in voltage waveforms, such as the one shown in Figure 8. A computer was used to control the pulse generation. Because the computer could not monitor the voltage waveform of the medical x-ray unit directly, a virtual link between the computer and the x-ray unit was established with the control interface. The line voltage which powered the control interface was used to produce timing reference pulses every time the line voltage went to zero. Because the entire United States is on the same power grid the timing reference pulses differed from the zero

points of the voltage waveform in the medical x-ray supply by a simple phase relationship. An oscilloscope was used to synchronize the timing reference pulses and the zero points in the voltage waveform with the phase adjustments in the control interface.

Normal operation of the medical unit required two steps to produce x-rays. After the thyratron switches were modified to function under computer control, three steps were required. The rotor had to be started, the x-ray unit had to be enabled, which produced x-rays in normal operation, and the thyratron switches had to be gated. The sequence of events in production of a typical x-ray pulse is shown in Figure 9. After the rotor was started and the x-ray unit was enabled, the computer start command enables the control interface. The computer ready command released the timing reference pulses. At the first zero point the x-rays were turned on and at the next zero point the x-rays were turned off. If a longer excitation period was required, the process was repeated until the number of waves, as specified by the operator, occurred. Variable length excitation periods from 1/120th of a second to several seconds could be produced. The maximum length of x-ray excitation period was limited by the voltage, current and time product which determined the electrical power the x-ray tube had to dissipate as heat.

Figure 9. Timing diagram which illustrates the time relationship and sequence of events in the production of a typical x-ray pulse.

Refrigeration and Optical Systems

The pulsed KEOL system was developed to study a variety of samples over a large temperature range. A refrigeration system with the flexibility to study solids, liquids and gases at temperatures in the range from liquid helium to boiling water was desired. A helium refrigerator (see Table 1 for details) was purchased and incorporated in the pulsed XEOL system. The helium refrigerator was a two stage cryostat which worked on the Solvay process and provided the capability of examining the spectra of solids, liquids and gases at thumb-switch-selectable temperatures ranging from 10 to 360 K with 1 K resolution.

Unfortunately, the helium refrigerator presented its own problems. Because the vacuum used to insulate the cryostat from the surroundings prohibited the use of conventional XEOL sample handling techniques, a sample holder which could contain the sample in a vacuum, allow x-rays to irradiate the sample and transmit the optical radiation was designed. The materials problems encountered in designing the sample holder with the specifications mentioned above required a change from the conventional geometry used in an XEOL experiment.

The sample holder used in this study is sketched in Figure 10. The body of the sample holder was made of oxygen-free high conductivity (OFHC) copper. The quarter-twenty thread attaches the holder to the cryostat.

Figure 10. Sample holder used with the pulsed XEOL system. Main body and retaining rings were fabricated from oxygen free high conductivity copper.

An indium washer was placed between the cryostat and the holder to compensate for expansion and contraction effects and to insure that thermal contact was made between the cryostat and the sample holder. The sample was held between a beryllium window and a fused quartz disc. Both the window and the disc were sealed to the holder with OFHC copper retaining rings and indium gaskets. Indium gaskets were used because of the ductility of indium at 10 K. Also, 0.2 mm. (0.008 in.) indium gaskets replaced the thicker gaskets shown in Figure 10 because less indium was smeared into the sample holder. The sample was injected into the holder with a syringe through the filling ports. The ports were threaded and sealed with number two screws and indium gaskets. The holder was emptied by removing two of the three number two screws.

A "straight-through" geometry was used with the sample holder described above. The optical diagram is shown in Figure 11. Advantage was taken of the penetrating ability of x-ray radiation and the crossed Czerny-Turner mount of the monochromator. The x-ray cross section of capture for carbon and hydrogen is small so the x-ray beam is not significantly attenuated by a hydrocarbon sample, therefore, the x-ray beam and the luminescence proceed into the monochromator. At the collimating mirror the optical signal is reflected to the grating but the x-ray radiation passes through the mirror and is absorbed by the lead shielding which surrounds the

Figure 11. A schematic diagram of the optical system designed around the crossed Czerny-Turner mount of the McPherson monochromator used in the pulsed XEOL system.

monochromator. The optical signal is dispersed at the grating and proceeds to the photomultiplier tube where it is detected. Scattered x-ray radiation does not enter the photomultiplier tube to produce noise because the photomultiplier tube is positioned off the primary optical axis.

Data Acquisition System

The major objective for construction of the pulsed XEOL system was to obtain decay curve data. The large x-ray flux available with a pulsed source represents an advantage over the DC sources, hence a secondary objective was to obtain pseudo-DC data. The major instrumental components of the data acquisition system were the gated integrator, the analog-to-digital converter and the data interface. The heart of the system, however, was the software which controlled the gated integrator. The software was written to make the data acquisition system operate in one of two modes, a fast mode or a slow mode.

In the fast mode, pseudo-DC data was obtained. The fast mode was used to study fluorescent single component emission. The integrator was started at the zero point of the x-ray wave and reset at the next zero point. The luminescence produced by a single x-ray wave was integrated and the voltage output of the integrator was considered the average

DC level of the luminescence. To improve the signal-to-noise ratio and the statistical values of the data several successive waves could be integrated during an extended pulse and the data of several pulses could be summed to signal average the noise. A mean and standard deviation were calculated and used as an average DC value for subsequent analytical calculations.

In the slow mode, decay curve data were obtained. There were two algorithms for sampling an exponential decay. The first algorithm involved integration of the entire decay curve and periodic sampling of the integrator, output. A numerical differentiation generated the original decay curve. The second algorithm divided the decay curve into equal time segments. Each time segment was integrated and the voltage output was plotted as a function of time to obtain the decay curve. The second approach was used because the individual integrations "signal averaged" the noise to a constant value which could be subtracted from each data point and enhanced signal-to-noise ratios as compared to the discrete sampling algorithm resulted.

Three integration periods (1000, 100 and 10 msec.) were programmed for the gated integrator, so that a large range of decay constants could be studied. The reset time of the integrator was 1 millisecond, hence a small percentage of the signal is lost. To illustrate, use of the 10 millisecond

integration period means 10 percent of the signal was lost during the reset time whereas with the 1000 millisecond integration period, only 0.1 percent of the signal was lost. The same "real-time" must be integrated to obtain equivalent signal-to-noise ratios if different integration periods are used. For example, if 10 decay curves are summed using the 1000 millisecond integration period then 100 decay curves have to be summed using the 100 millisecond integration period and 1000 decay curves have to be summed using the 10 millisecond integration period to obtain equivalent signal-to-noise ratios.

In both modes the data acquisition system proceeded in several steps. The analog signal from the fast response current amplifier was integrated according to the algorithm of the mode. The integrator output was digitized by the analog-to -digital converter in 20 microseconds. The digitized signal was passed to the computer through the data interface in a parallel transmission. The data was temporarily stored in the computer until output was punched and then the paper tape was processed by the large computer system as described in the next section.

Data Analysis

The pulsed XEOL system generated large quantities of numerical data in either mode of operation. To process these

data, sophisticated computational facilities were needed. Furthermore, the time resolution experiment was dependent on a numerical characterization of simple or complex decay curves. The statistical techniques needed to characterize the decay curves were ideally suited for computer analysis. For these reasons it was necessary to accumulate data with the minicomputer but process the data on a more sophisticated computer system.

The Iowa State University Computation Center operates an IEM 360/65 and an AS/5 computer system. PL/1 and FORTRAN IV are among the many languages supported by the system. An interactive system, known as WYLBUR, is also available. WYLBUR, PL/1 and FORTRAN IV were used extensively for the analysis of the numerical data.

The paper tape data set generated by the assembly language program contained control information used in the assembly language program and the numerical data collected from the experiment. The data set was transferred to the large computer and stored on disc. WYLBUR was used to construct a job which calculated the experimental results. If the fast mode was run the job contained only a PL/1 program which read the data from disc and calculated a mean and standard deviation. The results were printed with a data dump of the important control variables. If the slow mode was run, the job contained a PL/1 program and a modified FORTRAN IV

program. The PL/1 program read the data from disc and plotted the decay curve using Simplotter. The data dump was generated and an output data set was created which was the input for the FORTRAN IV program, called SMASH. SMASH either calculated a decay curve by a direct-search method or used a linear least squares procedure to calculate initial activities of the luminescence. The results of the SMASH program were printed by the output routines contained within the program.

After the data analysis job was completed, the output was retrieved from the Iowa State University Computation Center. The results were extracted from the printed material. If wavelength or concentration plots were desired, another jcb could be created with a WYLBUR execute file and PL/1 program, which generated a computer plot with Simplotter. Analytical data were calculated with a hand calculator.

All the programs mentioned in this section are listed in Appendices 1-4. The PL/1 programs were written specifically for this study but the SMASH program was borrowed from the neutron activation analysis group and the input routine was modified to facilitate operation of the program. The job control language which regulates execution of the job is listed in Appendix 5. The WYLBUR execute file which created the job is listed in Appendix 6.

X-ray Pulse Characteristics

The method used to generate the x-ray pulse limited the range of the time resolution experiment. The limitation is manifest by a differential equation which relates the number of excited molecules as a function of time to a supply term and a depletion term. The relation is expressed in equation 1:

$$N' = S*F - k*N \tag{1}$$

where N represents the number of excited molecules as a function of time, S is the cross section for capture of an x-ray photon, F is the driving function or functional form of the excitation source ($F=\sin(\omega t)$) and k is the decay constant of the excited molecule. The equation holds only while the x-ray pulse is active. The solution is given in equation 2;

$$N = S[k*sin(\omega t) - \omega * cos(\omega t)] / [k^2 + \omega^2]$$
 (2)

Three cases are considered to simplify the form of the solution. If $k>>\omega$, which corresponds to phosphorescent emission, then equation 3 results:

$$N = (S/\omega)\cos(\omega t) \tag{3}$$

As the x-ray pulse ($sin(\omega t)$) goes to zero, the number of excited molecules goes to a maximum and an initial activity

exists after the x-ray pulse. If $k << \omega$, which corresponds to fluorescent emission, then equation 4 results:

$$N = (S/k)\sin(\omega t) \tag{4}$$

Now, as the x-ray pulse goes to zero so does the number of excited molecules and no initial activity exists after the x-ray pulse. Finally, if k=w then no simplification of the equation is possible. Some initial activity does exist after the x-ray pulse but the decay is severely distorted by the shape of the excitation pulse. Fourier techniques are used to deconvolute the data and extract the decay curve.

To summarize the three cases, with the x-ray pulse used in the present study the time resolution experiment was limited to phosphorescent emission. Fluorescent emission could not be time resolved but was studied by observation of single component emission with the pseudo-DC mode. No intermediate decay curves were observed from the PAHs studied, but as the scope expands to include other types of organic compounds it will be necessary to develop the Fourier techniques to deconvolute the data.

CHAPTER 4: EXPERIMENTAL PROCEDURES

Preparation of Chemicals, Solvents and Solutions

All of the PAHs used in the XEOL study are listed in Table 3. The PAHs were purified by zone refining or vacuum sublimation as indicated in the table. The crude PAHs were sealed in a glass tube under a partial pressure of helium and melted before being zone refined. A minimum of five passes on a ten-stage zone refiner were used to purify the PAHs. The zone refined tubes were scratched with a file and broken in thirds. The top and bottom thirds of the tube were discarded and the middle third was retained. The PAHs were chipped and scraped from the glass tube when needed for solutions. To vacuum sublime coronene and benzo-ghi-perylene, the two compounds were sealed individually in a vacuum under a water-cooled glass probe. A mineral oil bath was used to sublime the PAHs which subsequently condensed on the glass probe. The glass probe was removed from the vacuum and the PAH was scraped from the surface and stored for later use. Vacuum sublimation was used because too little starting material was available for zone refining. Only naphthalene and fluorene were used as received.

On the basis of their XEOL spectra, seven of the PAHs were used as model compounds for the time resolution experiments. Triphenylene, coronene, chrysene, phenanthrene,

fluoranthene, naphthalene and fluorene exhibited phosphorescent emission. Perylene and 3,4-benzopyrene were used as model compounds for the single component fluorescent experiments.

Table 3. Polynuclear Aromatic Hydrocarbons

Naphthalene Anthracene Phenanthrene 1,2-Benzanthracene Pyrene Chrysene Triphenylene 1,2,5,6-Dibenzanthracene Zone refined
Phenanthrene Zone refined 1,2-Benzanthracene Zone refined Pyrene Zone refined Chrysene Zone refined Triphenylene Zone refined 1,2,5,6-Dibenzanthracene Zone refined 3,4-Benzopyrene Zone refined
1,2-Benzanthracene Zone refined Pyrene Zone refined Chrysene Zone refined Triphenylene Zone refined 1,2,5,6-Dibenzanthracene Zone refined 3,4-Benzopyrene Zone refined
Pyrene Zone refined Chrysene Zone refined Triphenylene Zone refined 1,2,5,6-Dibenzanthracene Zone refined 3,4-Benzopyrene Zone refined
Chrysene Zone refined Triphenylene Zone refined 1,2,5,6-Dibenzanthracene Zone refined 3,4-Benzopyrene Zone refined
Triphenylene Zone refined 1,2,5,6-Dibenzanthracene Zone refined 3,4-Benzopyrene Zone refined
1,2,5,6-Dibenzanthracene Zone refined Zone refined
3,4-Benzopyrene Zone refined
•
Pervlene Zone refined
Benzo-ghi-perylene Vacuum sublimed
Coronene Vacuum sublimed
Fluorene As received
Fluoranthene Zone refined

Three n-alkane solvents were used, n-hexane, n-heptane and n-octane. The solvents were distilled and passed through a cation exchange resin in the silver form to remove the last traces of aromatic impurities. A weak bond is formed between the silver cation and the pi bond of the aromatic system. If the price of the solvents should become prohibitive the purification procedure can be used to recycle the n-alkane solvents. Gas chromatographic analysis of the purified solvents revealed the only contaminants were trace amounts of

isomeric aliphatic hydrocarbons.

Stock solutions of the PAHs were prepared in volumetric flasks from weighed quantities of purified PAHs.

Concentrations ranged from 0.01 M to 0.0001 M. Solubility limited the maximum concentration for several PAHs. PAHs which dissolved slowly were equilibrated overnight or vigorously stirred by an ultrasonic cleaner. Concentrated stock solutions were prepared to minimize adsorption and decomposition effects commonly observed with very dilute solutions. All stock solutions were stored in the dark to avoid photodecomposition. Dilute solutions were prepared as needed on a day-to-day basis from the stock solutions. No successive dilutions were performed to minimize pipetting errors.

Time Resolved Spectroscopy

The principles of time resolved spectroscopy are based on the radiative lifetimes of excited molecules. The functional form of the time dependence of single component luminescence is given in equation 5:

$$I(t) = I(0) \exp(-kt)$$
 (5)

I(t) is the emitted intensity as a function of time, I(0) is the initial intensity at the termination of the excitation pulse, k is the decay constant of the excited species and t is the time. If many species are emitting simultaneously the time dependent intensity is expressed by equation 6:

$$I(t) = \sum_{i} I(0) \exp(-k_{i}t)$$
 (6)

The total intensity is the sum of the intensities of all the emitting species.

The time resolution experiment is divided into two phases. First, decay curves are obtained from the individual luminescent species and decay constants are determined by substitution of the data into equation 5. Second, decay curves from mixtures of luminescent species are collected. The decay constants, determined from single component decay curves, are substituted into equation 6 and the initial intensity of each component is calculated. Finally, the initial intensities are related to the concentration of the luminescent species in the sample.

To prepare either phase of the time resolution experiment the steps listed in Table 4 are performed. After the preparations are completed, the experiment is initiated by operator interaction with the minicomputer. The step by step operation of the minicomputer is described in Table 5.

After the experiment is completed and the paper tape data set is transferred to disc, WYLBUR is used to prepare a job which processes the data. If a decay constant is sought certain conventions are followed. A preliminary job is

Table 4. Stepwise Preparation of Pulsed XEOL System

- 1. Inject the sample into the holder and seal the holder with indium gaskets and number two screws (Approximately 1.0 ml. of sample is needed to fill the holder).
- 2. Attach the holder and radiation shield to the cryostat and insert the cyrostat into the vacuum shield.
- 3. Connect the vacuum line and pull a vacuum on the contents of the vacuum shield.
- 4. Start the refrigerator and wait for the sample to cool.
- 5. Turn on the medical x-ray unit and select the current and voltage for the x-ray pulse (typically 60 kV., 100 mA.).
- 6. Make certain the slits are opened (typically 1000 micrometers), the monochromator is tuned to zero order and the photomultiplier tube is on (typically 1200 volts).

7. Turn on the computer power key and the teletype.

created which generates a plot of the decay curve. An estimate of the half life is made from the decay curve by measuring the time the intensity drops to one half the initial value. The decay constant is equal to 0.693 divided by the half life. A second job is generated which contains SMASH. The estimate of the decay constant is input into SMASH as a negative number. The negative estimate signals SMASH to perform a direct search for the decay constant. The initial estimate is used to calculate a maximum value for the quality of fit. A search vector is followed and the value for the quality of fit is minimized as the search vector proceeds to

the final value of the decay constant. At the completion of the calculation output is generated which lists the initial data and the calculated fit with the estimated decay constant and with the final decay constant.

Table 5. Minicomputer Operation

- 1. Load the assembly language program into memory if the program is not already present in memory (Consult the operations manual).
- 2. Depress all address switches and press the extended address load switch.
- 3. Load 200 octal into the address switches and press the address load switch.
- 4. Place the halt switch in the up position, press the clear switch and the continue switch (The telepype should print a message).
- 5. Enter the date and time as requested and answer subsequent questions. Typical answers are; Number of waves = 480, Number of passes = 10, Transient decay = 800, Number of data points = 100, Range code = 3. After the last question is answered the experiment will start automatically.
- 6. Turn the punch on and wait for the next question to be printed by the teletype.
- 7. After the experiment is completed depress the halt switch and tear the paper tape data set off the punch.
- 8. Roll the paper tape and submit it at the Iowa State
 University Computation Center for transfer to disc.

A complex decay curve can be time resolved with SMASH if different conventions are used. The same WYLBUR execute file

is used to prepare the job. A decay constant, which has been determined from single component data, is entered for each species which contributed to the decay curve. All decay constants are entered as positive numbers. The positive decay constants signal SNASH to perform a linear least squares procedure to calculate the initial intensities of the various components. The quality of fit is calculated and if the value does not fall between specific limits, error messages are generated. The error messages indicate whether too many or too few decay constants were entered. The output contains the initial data and the calculated data. The initial intensities are listed with the corresponding decay constants.

The output produced by the job is retrieved from the computation center and the calculated results are extracted from the printed matter and tabulated. If analytical results are sought the calculated results are normalized for amplifier gain and integrator input resistance. The normalization factors are listed in Table 6. After the results are normalized, calibration curves are plotted or unknown concentrations of PAH's are calculated.

Fluorescence Measurements

If fluorescent emission is measured the capacitor in the gated integrator is reduced by a factor of 60. Greater integrator sensitivity is needed because the integration

Table	6.	Normali	ization	Factors
T C D T C	~ •	1104 444		1 40002

Amplifier Gain	Input Resistor	Normalization Factor
1 X 108	50K ohms 100K ohms	1 2
1 X 107	25K ohms 50K ohms 100K ohms	5 10 20
1 X 106	25K ohms 50K ohms 100K ohms	50 100 200

period is shortened to 1/120th of a second when single waves are integrated. After the integrator is modified the pulsed XFOL system is prepared as described in Table 4. The x-ray supply is adjusted to 90 kV. and 300 mA. because a shorter pulse is used for the fluorescence experiment and the x-ray tube can dissipate the heat. The experiment is initiated as described in Table 5 but different input is used. The fast mode is specified for the assembly language program and only the number of waves in the pulse and the number of passes are entered. Typically 40 waves and 20 passes are selected. The experiment begins after the last question is answered.

Even though computerized data analysis techniques exist for the fast mode, the techniques were not used. The data collected from fluorescent emission were analyzed with a programable calculator. If analytical results are desired the calculated results are normalized with the factors given in

Table 6. A mean and standard deviation were calculated from the signal averaged data obtained for each wave in the pulse. However, the data obtained from the first twenty waves were discarded because the x-ray flux produced by the x-ray tube is not stable immediately after the x-ray tube is turned on. The mean is used to profile emission bands, generate calibration curves and calculate unknown PAH concentrations.

CHAPTER 5: RESULTS AND DISCUSSION

Decay Constant Values

The first step in the time resolution experiment was the determination of decay constants of the phosphorescent PAHs. These constants were determined from the stock solutions prepared from purified PAH materials. Because the pulsed XEOL system was untested, a reproducibility study of the. determination of several decay constants was performed. The five day stability of the system was measured for triphenylene, coronene, chrysene, phenanthrene and fluoranthene, and a mean was calculated from five values obtained on different days. The decay constants obtained on five different days for seven PAHs are listed in Table 7. Two of the values in the table were excluded from statistical calculations by the Dixon criterion. The excluded values resulted from an error in the search routine used by SMASH, because noise in the measurement system can cause a large spread in the data points which describe a decay curve, with the greatest spread late in the decay scheme, and a false minimum in the quality of fit can be sought by the search vector. The frequency of occurrence of the error in the search routine was governed by the signal-to-noise ratio of the data. The mean and percent relative standard deviation of each decay constant are summarized in Table 8.

Table 7. Five Day Determination of Decay Constants1

Compound	Day 1	<u>Day 2</u>	<u>Day 3</u>	<u>Day 4</u>	<u>Day 5</u>
Triphenylene	0.0696	0.0687	0.0688	0.0699	0.0689
Coronene	0.1160	0.1157	0.1165	0.1155	0.1169
Fluorene	0.1704	0.1690	0.1707	0.1704	0.1703
Phenanthrene	0.2775	0.2781	0.24602	0.2736	0.2746
Naphthalene	0.3388	0.3483	0.3550	0.3385	0.28782
Chrysene	0.3831	0.3809	0.3817	0.3849	0.3806
Fluoranthene	1.1231	1.1425	1.2067	1.0931	1.0222

^{&#}x27;All quantities reported in sec-1

Table 8. Decay Constant Statistics1

Compound	Mean Decay Constant	% RSD
Triphenylene	0.0692	0.77
Coronene	0.1161	0.50
Fluorene	0.1702	0.39
Phenanthrene	0.2760	0 .7 9
Naphthalene	0.3452	2.3
Chrysene	0.3822	0.46
Fluoranthene	1, 1175	6.0

^{&#}x27;All quantities reported in sec-1

If the decay constants are not independent of concentration, analytical applications of time resolved spectroscopy would be impossible. The concentration independent behavior of the decay constants had to be verified. Triphenylene, coronene, phenanthrene, chrysene and fluoranthene were selected for these verifications. The results are presented in Table 9. With the exception of the lowest concentration values for phenanthrene, chrysene and

² Values excluded by Dixon Criterion

fluoranthene, the decay constants reported in Table 9 agreed with the values tabulated in Table 8. Therefore, the independent behavior of the decay constants with concentration was verified. The three values at the lowest concentration were severely distorted by a background luminescence. When the concentration dependence study was performed the background interference was not understood and no correction was made. The source and nature of the background luminescence will be discussed in the next section.

Table 9. Concentration Dependence of Decay Constants1					
Compound	1 x 10-3M	1 x 10-4M	1 X 10-5M	1 x 10-6 M	_
Triphenylene	0.0700	0.0705	0.0708	0.0715	
Coronene	~ ~ ~ ~ ~ ~	0.1171	0.1180	0.1182	
Phenanthrene	0.2791	0.2770	0.2820	0.3037	
Chrysene	0.3851	0.3879	0.3805	0.4950	

Fluoranthene 1.2374 1.1924 0.9067 -----

'All quantities reported in sec-1

A comparison of the decay constants observed in this study with literature values is shown in Table 10.

Examination of the tabulated values indicates XEOL-TRS and conventional methods give comparable results. The agreement

between decay constants obtained from optical excitation and x-ray excitation helps to unravel the XEOL excitation mechanism. Normally, the decay constants of phosphorescent species in a highly ionized environment are significantly different from the decay constants of phosphorescenct species in a neutral environment. Thus, x-ray excitation as compared to optical excitation does not affect the environment of the excited species appreciably even though ionized intermediates are produced by x-ray interaction with matter. Finally, the results obtained from decay curves of individual PAHs are summarized as decay constants, lifetimes and half lives in Table 11. The decay constant and the lifetime are reciprocally related and the half life is 0.693 divided by the decay constant.

Mixture Analysis by Time Resolution

One advantage of time resolved spectroscopy was demonstrated by some early results obtained from simple two component systems. As a first example of the usefulness of time resolved spectroscopy, a mixture of triphenylene and phenanthrene was studied. On the right hand side of Figure 12 the DC spectra of triphenylene and phenanthrene are presented with the background trace and the DC spectrum of a mixture of the two compounds. The double lines which extend from the top spectrum to the bottom spectrum indicate the region of the

Figure 12. Time resolution of the phosphorescence emission from a mixture of triphenylene and phenanthrene in n-heptane by use of the pulsed XEOL technique.

Table 10. Comparison of XEOL and Published Decay Constants1

Compound	XEOL-TRS	<u>Birks (26)</u>	McClure (54)
Triphenylene	0.069	0.062	0.062
Coronene	0.12	0.11	0.11
Fluorene	0.17	0.20	0.20
Phenanthrene	0.28	0.29	0.30
Naphthalene	0.34	0.42	0.38
Chrysene	0.38	0.38	0.40
<u>Fluoranthene</u>	<u> 1.12</u>	1.18	

^{&#}x27;All quantities reported in sec-1

Table 11. Decay Constants, Lifetimes and Half Lives of PAHs

Compound	Decay_Constant	Lifetime	Half Life
Triphenylene	0.069 sec-1	14.5 sec	10.0 sec
Coronene	0.116 sec-1	8.6 sec	6.0 sec
Fluorene	0.170 sec-1	5.9 sec	4.1 sec
Phenanthrene	0.276 sec^{-1}	3.6 sec	2.5 sec
Naphthalene	0.345 sec^{-1}	2.9 sec	2.0 sec
Chrysene	0.382 sec^{-1}	2.6 sec	1.8 sec
Fluoranthene	1.118 sec-1	0.89 sec	0.62 sec

spectra isolated by the monochromator. An obvious spectral interference is observed. Or the left hand side of Figure 12 the decay curves for the individual compounds and the mixture are drawn. The decay constants used to time resolve the spectral interference are given on the top two plots and the initial intensities are summarized on the bottom plot. The nonzero initial intensities prove the spectral interference can be resolved temporally. A second example is presented in Figure 13 for the mixture of triphenylene and chrysene.

Figure 13. Time resolution of the phosphorescence emission from a mixture of triphenylene and chrysene in n-heptane by use of the pulsed XEOL technique.

To determine the problems encountered in the time resolution of more complex mixtures with the pulsed XEOL system, a five component system which contained triphenylene, coronene, chrysene, phenanthrene and fluoranthene was examined. The five PAHs were selected because their decay constants cover a large range of values with no overlap.

Even though the five components in the mixture share no common emission band and spectral interferences are not severe, a second advantage of time resolved spectroscopy was demonstrated when the five component mixture was time resolved. The individual lines in the emission bands of the FAHs were weak and analytical determinations based on emission of single lines lacked sensitivity. To demonstrate the improved sensitivity of PAH determination by time resolved spectroscopy the monochromator was tuned to zero order and the slits were opened to 1 millimeter. In this way all the light emitted by the sample proceeded through the monochromator unresolved. If the monochromator had not been an integral part of the pulsed XEOL system, only a lens and a mirror would have been used to transmit the optical signal to the photomultiplier tube. With the slits opened to 1 millimeter the optical throughput of the monochromator obviously increased and the sensitivity of the measurement improved. The amount of scattered radiation which reached the detector also increased as the sli's were opened, but with

time resolution only radiation which is characterized by a specific decay constant was detected. All other radiation produces a DC background which is removed by a simple subtraction.

complex decay curves of several dilutions of the mixture were collected with the pulsed XEOL system. Each decay curve was time resolved and the results were normalized. Analytical calibration curves, both linear and logarithmic, for each component in the mixture were plotted and are drawn in Figures 14-18. Several unexpected features were observed for the logarithmic and linear plots of concentration versus intensity.

The first unexpected feature was the nonlinear behavior of the calibration curves. An approximate slope of one half was observed for the log plots, which indicated that the observed intensity was a function of the half power of concentration. Two explanations for the one half slope are possible. First, a half power rate expression could exist as an intermediate step in the kinetic scheme which describes the excitation mechanism. For example, a half power rate expression is observed for some free radical reactions (e.g. the formation of chlorine free radicals from molecular chlorine). Ionized species and free radicals are produced when x-rays interact with matter. The second possibility is based on the scattering of light within the translucent

Figure 14a. Linear plot of intensity versus molar concentration for triphenylene.

Figure 14b. Logarithmic plot of intensity versus molar concentration for triphenylene.

Figure 15a. Linear plot of intensity versus molar concentration for coronene.

Figure 15b. Logarithmic plot of intensity versus molar concentration for coronene.

Figure 16a. Linear plot of intensity versus molar concentration for chrysene.

Figure 16b. Logarithmic plot of intensity versus molar concentration for chrysene.

Figure 17a. Linear plot of intensity versus molar concentration for phenanthrene.

Figure 17b. Logarithmic plot of intensity versus molar concentration for phenanthrene.

Figure 18a. Linear plot of intensity versus molar concentration for fluoranthene.

Figure 18b. Logarithmic plot of intensity versus molar concentration for fluoranthene.

sample. The emission of the sample originates from different depths within the sample and not just the sample surface. Formation of a microcrystalline snow when n-alkanes are frozen produced many reflective surfaces within the sample. Internal reflection and optical scattering reduced the probability of detection of a photon which originated in the interior of the sample as compared to a photon which originated on the surface of the sample. The relationship between concentration of luminescent species and the probability of detection of a photon emitted in the n-alkane snow as a function of distance from the surface of the sample must be considered. The functional behavior of the probability of detection as a function of distance from the surface of the sample could be responsible for the observed half power dependence of intensity on concentration. Escape depth considerations are common in many surface techniques and empirical functions have been used to make corrections for probabilities of escape for x-rays, photons and electrons (55). The answer to the question of which interpretation is correct, or if some other factors need to be considered could not be answered in the course of the present investigation.

The second unexpected feature was the flattening of the fluoranthene and triphenylene analytical calibration curves at low concentration. This flattening could be attributed to a background luminescence from the quartz window in the

sample holder characterized by decay constants with values approximately equal to the decay constants for triphenylene and fluoranthene. The background luminescence of the quartz window at 10 K contains two slow components with decay constants 0.068 and 1.160 sec-1. The second component was six times as intense as the first, hence a greater background effect was observed for fluoranthene as compared to triphenylene. The source of the background luminescence is defects and impurities in the quartz which become luminescent centers at low temperatures (56). Above 200 K no background luminescence is observed. Two possible solutions to this problem are considered in the next chapter.

Finally, the analytical calibration curves for coronene and chrysene flattened at high concentration. The observed behavior is not concentration quenching because singlet-triplet absorption is a forbidden process. The exact nature of the effect is not fully understood but energy transfer between luminescent species at high concentration and photochemical decomposition may be contributing to the observed behavior. Elucidation of photochemical processes in n-alkane systems induced by x-ray irradiation will be needed to understand the relationship between the observed intensity and high concentration of PAHs in the n-alkane snow.

To test the applicability of time resolved spectroscopy for analytical problems, three synthetic unknown PAH mixtures

()

were prepared and analyzed. The analysis was performed in triplicate and the results are tabulated in Table 12. All the values in the table are reported in micrograms. The uncertainties range from a few percent to 20 percent relative. Values for coronene and chrysene are not reported for unknown No. 1 because the amount present was below the detection limit for that particular sample. The phenanthrene value for unknown No. 2 and the chrysene value for unknown No. 3 were low because of peculiarities in SMASH discussed earlier. Although the data in Table 12 are promising, additional development undoubtedly will be required before XEOL-TRS can make a major contribution to the determination of PAHs in complex mixtures.

Table 12. Analytical Data from XEOL-TRS Analysis 1 2

Compound	Unkno <u>Actual</u>	own No. 1 Found		wn No. 2 1 Found		
Triphenylene	0.57	0.64±0.05	-	1.9±0.2	5.7	5.7±0.9
Coronene	0.60	~~~~	3.0	3.0 ± 0.3	6.0	5.4±2
Chrysene	5.7		11	12±2	23	13±1
Phenanthrene	1. 6	1.3±0.4	8.9	5.0±0.4	36	34±7
Fluoranthene	100	120±10	200	200±40	400	440±80

^{&#}x27;All quantities reported in micrograms 'Analysis performed in triplicate

Single Component Analysis by Fluorescence

The pseudo-DC mode was used to measure fluorescent emission induced by the greater x-ray flux available from the medical x-ray supply. Wavelength profiles were obtained for 3,4-benzopyrene and perylene in the wavelength region around 427.5 nm. and 453.0 nm., respectively. Analytical calibration curves were plotted from normalized data obtained from the maxima of the wavelength profiles. The analytical calibration curves were used to analyze three synthetic unknowns. The third unknown contained both compounds whereas the other two unknowns contained only a single component. The analysis was performed in triplicate and the results are tabulated in Table 13. All values are reported in micrograms.

 Table 13. Fluorescence Data from Pulsed XEOL Analysis¹ 2

 Unknown No. 1 Unknown No. 2 Unknown No. 3

 Compound Actual Found Actual Found Actual Found

 Perylene

 2.5 1.6±0.8 --- --- 12.6 2.9±0.2

 3,4-Benzopyrene --- 2.3 2.2±0.6 3.2 2.5±2

All quantities reported in micrograms Analysis performed in triplicate

The results are disappointing for the mixture and the uncertainties are unacceptable for all three unknowns. The large uncertainties are caused by the inability to

reproducibly peak the monochromator on the maximum intensity wavelength of the emission band and the fluorescent background emitted by the sample holder. Location of the maximum intensity wavelength of the emission band was a long tedious process with the pseudo-DC excitation source as compared to the standard DC excitation source and an alternate approach was sought. Suggestions for the correction of these problems are discussed in the next chapter. The analysis of the mixture is further complicated by the suppression of 3,4-benzopyrene emission by perylene. Interferences of the type observed for unknown No. 3 are expected when fluorescence analysis is performed with PAHs because energy transfer processes play a major role in the excitation and deexcitation mechanisms of many PAH systems. After appropriate system improvements the XEOL technique could be applied to the fluorescent analysis of single component PAH systems. However, single component PAH analysis is not practical because PAHs occur in complex mixtures. Therefore, the use of internal reference compounds, prior isolation of PAHs by ring size and alkyl substitution or other innovative analytical approaches will be required before XEOL can be applied to the fluorescent analysis of PAHS.

Discussions and Conclusions

The results reported in this chapter demonstrate the feasibility of the XEOL-TRS technique for the analysis of simple mixtures of phosphorescent PAHs. The technique could obviously be applied to other organic phosphorescent systems. The present study is the first application of XEOL to organic systems and many basic principles were established. The use of low temperatures and unconventional geometries are two examples. Techniques for the determination of decay constants were developed. As the scope expands to other organic systems, Fourier techniques and phase resolution will be required to measure shorter decay constants. The examination of fluorescence produced with a high power x-ray pulse demonstrated the flexibility of the pulsed XEOL system to study fluorescence and phosphorescence. The combination of XEOL with conventional pulsed fluorescence techniques will expand the scope of the XEOL method. Finally, the temperature flexibility, supplied by the helium refrigerator employed in the pulsed XEOL system, makes possible the study of a wide range of solids, liquids and gases.

XEOL coupled with time resolved spectroscopy does not solve all the problems of PAH analysis. The technique in the present state of development does not compete with gas or liquid chromatography, GC-MS or conventional fluorescence techniques. The improvements discussed in the next chapter if

implemented should improve the capabilities of the pulsed XEOL system. However, the true potential of the method as applied to PAH analysis will not be appreciated fully until a nanosecond width x-ray pulse is used for excitation. A synchrotron produces an intense x-ray pulse of nanosecond width which would eliminate the limitations imposed on the present study by the pulse characteristics. As time and space become available on national synchrotron facilities a proposal, based on the work presented here, should be prepared. The improved sensitivity and more general applicability of time resolved fluorescence as opposed to time resolved phosphorescence should be stressed. Interferences (e.g. the suppression of 3,4-benzopyrene emission by perylene) could be characterized by the pulsed XEOL system in the pseudo-DC mode prior to the synchrotron study. Even with ideal x-ray excitation sources and unlimited computational facilities the XEOL technique would not be the ultimate method for the analysis of PAH mixtures. The PAH problem is complex and many analytical techniques will be required to characterize natural and man made mixtures of PAHS.

CHAPTER 6: MISCELLANEOUS OBSERVATIONS AND FUTURE WORK

The work reported earlier (13,45), combined with the results presented in this dissertation, is the first application of XEOL to an organic system. Furthermore, the use of a pulsed x-ray excitation source is a novel approach to XEOL. These two facts suggest the scope of application for XEOL coupled with conventional luminescent methods is very broad and requires additional investigation.

Before new applications of XEOL are considered, modifications of the pulsed XEOL system are described in the following section. Implementation of the modifications would eliminate many of the problems encountered in the PAH study. In the next section the effects of solvent composition are discussed and suggestions are presented for the enhancement of the sensitivity of the PAH analysis by XEOL. Finally, XEOL results obtained from novel systems are presented in the last section and new applications of XEOL to analytical problems are indicated.

Pulsed XEOL System Modifications

The major problem encountered in the analysis of PAHs with the pulsed XEOL system was the background luminescence emitted by the quartz window in the sample holder. To correct the problem, the quartz window can be replaced by a window composed of a different material or removed completely.

Several window materials were tested to eliminate the background luminescence but no suitable substitute was found. Single crystal quartz was not available when the other materials were tested. A sample of single crystal quartz should be obtained and tested as a substitute window material.

An alternate approach to eliminate the background luminescence from the quartz window in the sample holder involved deposition of the sample on a cold beryllium disk from a flowing gas stream. A doughnut-shaped manifold with twelve directional ports was designed. At the present time deposition techniques are being developed. The major problems that need to be solved are improved vacuum control, measurement and control of sample deposition and efficient vaporization and transport methods for the PAH material. After the problems are solved, many interesting experiments are possible, in particular, x-ray generation of reactive species and photochemical reactions. The deposition of gaseous samples on a cold surface opens the realm of matrix isolation to study by the XEOL technique.

Another problem, encountered in the fluorescence study, was the inability to reproducibly position the monochromator at a specific wavelength. Mechanical play in the wavelength counter and large temperature variations in the laboratory contributed to the problem. To correct the difficulty

software should be developed to calculate a polynomial fit from discrete data points which characterize the profile of the emission band. A numerical differentiation of the rolynomial produces the derivative of the emission band shape. The wavelength of maximum intensity is equal to one of the roots of the polynomial expression which represents the derivative set equal to zero. The maximum intensity is calculated by substitution of the wavelength of maximum intensity into the original polynomial. These numerical methods eliminate the need to position the monochromator reproducibly because only the relative positions of the data points with respect to one another are required. The relative positions can be accurately determined by use of a computer-controlled stepper motor to position the monochromator at the discrete wavelengths in the profile of the emission band. The software and interface needed to operate a stepper motor by computer control were developed by D. Kalnicky (57) and are available in the laboratory. A stepper motor should be purchased and mounted on the monochromator and modifications of software for use of the stepper motor should be started.

In addition to the modifications described in the preceding paragraphs, optimization of the x-ray pulse characteristics is imperative. The trade offs between voltage, current, and pulse duration of the x-ray pulse

should be studied. Figures 19-21 are plots of intensity versus current, voltage and pulse duration. A factor of two increase in current or pulse duration doubles the measured intensity but an approximate fifty percent increase in voltage produces an equivalent enhancement. Optimization of PAH analysis with respect to the three pulse parameters, within the limits determined by the energy the x-ray tube must dissipate as heat, should enhance the sensitivity and lower the detection limits of the XEOL technique.

Solvent Composition

The host matrix or solvent composition for an organic system, e.g. PANs in n-alkane solvents, is an important factor in all XEOL experiments. The host matrix has to interact with the primary x-ray radiation and support energy transfer processes which excite the guest species. Very few host matrices exhibit XEOL emission from guest species. A better understanding of the excitation processes in those matrices which exhibit XEOL emission should be developed in the near future. The results of a study of the excitation mechanism for PAHs in n-alkanes in particular, will assist in the prediction of new organic systems which will exhibit XEOL emission. The importance of solvent composition for the PAH study is demonstrated by two probing experiments.

INTENSITY VS CURRENT

Figure 19. Measured intensity as a function of the current of the electron beam used to produce the x-ray pulse.

INTENSITY VS VOLTAGE

Figure 20. Measured intensity as a function of the acceleration voltage experienced by the electron beam used to produce the x-ray pulse.

INTENSITY VS PULSE DURATION

Figure 21. Measured intensity as a function of the duration of the x-ray pulse.

The first experiment examined the effect of n-alkane chain length on the structure of the XEOL spectrum.

Anthracene and 3,4-benzopyrene were examined in n-hexane, n-heptane and n-octane. The three anthracene spectra are presented in Figures 22-24. The emission band for anthracene in n-hexane is broad and structureless whereas in n-heptane several sharp lines are observed and in n-octane a weak band is observed. A different effect is observed for 3,4-benzopyrene as shown in Figures 25-27. The structure of the emission sharpens and the intensity increases as the chain length increases. Similar solvent effects are observed for all the PAHs studied. These solvent effects and others previously observed for UV excitation of n-alkane-PAH systems (35,58-61) need to be investigated so that the analysis of PAHs by the XEOL technique can be optimized.

A second probing experiment on solvent composition involved the introduction of a heavy atom to the n-alkane-PAH system by addition of iodobutane or tetra-n-butyllead to the solvent. Addition of a heavy atom to the solvent induces the external heavy atom effect in PAH systems (62-64). The increase of the spin-orbit coupling of excited singlet and triplet states results in an increase in the rate of intersystem crossing between singlet and triplet states and thus enhanced phosphorescence emission. Analytical applications of the external heavy atom effect in UV excited,

Figure 22. XECL spectrum of anthracene in n-hexane at a concentration of 1 \times 10-4 M.

Figure 23. XECL spectrum of anthracene in n-heptane at a concentration of 1 X 10-4 M.

Figure 24. XECL spectrum of anthracene in n-octane at a concentration of 1 \times 10⁻⁴ H.

Figure 25. XECL spectrum of 3,4-benzopyrene in n-hexane at a concentration of 1 \times 10-4 \times .

Figure 26. XECL spectrum of 3,4-benzopyrene in n-heptane at a concentration of 1 X 10-4 M.

Figure 27. XECL spectrum of 3,4-benzopyrene in n-octane at a concentration of 1 \times 10-4 M.

PAH systems are numerous (65-67). Furthermore, the x-ray capture cross section of an atom increases with atomic number (47). Therefore, the addition of a heavy atom to the solvent results in a host with a large x-ray capture cross section and a second enhancement of the luminescence emission should result with the XEOL technique. The heavy atom host captures more x-ray photons than a hydrocarbon host and the energy of the x-ray beam is more efficiently converted to electronic excitation energy for the PAH guest molecules.

No effect was observed for iodobutane but an enhancement was observed for tetra-n-butyllead. Table 14 summarizes the effect of tetra-n-butyllead on five PAHs at a concentration of 10 microliters of tetra-n-butyllead per 1 milliliter of n-heptane. The results indicate improved detection limits could be achieved with the addition of a heavy atom to the solvent. Future experiments should be scheduled to study the effect of heavy atom concentration on the signal and decay constant of the analyte. Also, the optimum concentration of heavy atom and the optimum heavy atom need to be determined.

Other Systems Amenable to Study by XEOL

An obvious application of the XEOL study of PAHs is the characterization of fuel oils by the PAH fraction as described by the U.S. Coast Guard (68). Fuel oil samples were collected and XEOL spectra were obtained. The initial

Table 14. External Heavy Atom Effect on PAH Emission

Compound	Conc.	Signal Without Heavy Atom	Signal With Heavy Atom	Percent <u>Increase</u>
Fluoranthene	1 X 1 0 - 2 M	8642	7 6050	780%
Chrysene	1 X 1 0 - 3 M	13019	21060	62%
Phenanthrene	1 X 1 0 - 3 M	31484	47200	50%
Triphenylene	1X10-3M	88157	123700	40%
Coronene	1 X 1 0 - 4 M	8454	9360	11%

results were not competitive with the U. S. Coast Guard results, hence the fuel oil samples are being stored until the instrumental modifications have been completed. After the modifications are tested, the fuel oil samples will be characterized by XEOL spectra and complex decay curves. Characterization of fuel oils by complex decay curves will be one more method of identification necessary to fingerprint fuel oil spills and stock supplies of fuel oils.

XEOL emission from the final system considered was discovered by accident. The first experiments performed with the gas manifold involved the co-deposition of argon and PAHs on the beryllium disc to take advantage of the large x-ray capture cross section of argon as compared to carbon and hydrogen. A routine examination of a "pure" argon deposit revealed a complex spectrum, as shown in Figure 28. The many lines and bands are characteristic of nitrogen, oxygen and other gaseous impurities in argon. Possible analytical applications for the determination of these gases in argon

Figure 28. XECL spectrum of solid argon deposited on a beryllium window at 10 K from a flowing gas stream.

should be investigated.

In Figures 29 and 30 the spectra of krypton and xenon are shown. The broad bands in the short wavelength region suggest that these materials may be better suited as hosts for PAHs and other luminescent organic molecules. This possibility is being investigated. The origins of the other lines in the two spectra are unknown but trace gaseous impurities are the most likely sources.

The combination of rare gases and hydrocarbons, both aliphatic and aromatic, opens many avenues of research for the XEOL technique in the pulsed and DC modes. The many matrices with varying degrees of heavy atom concentration, structural peculiarities and x-ray capture cross sections should supply ideal XEOL environments for many different types of organic analytes.

Figure 29. XECL spectrum of solid krypton deposited on a beryllium window at 10 K from a flowing gas stream.

Pigure 30. XECL spectrum of solid xenon deposited on a beryllium window at 10 K from a flowing gas stream.

BIBLIOGRAPHY

- 1. Haddow, A. in <u>The Physiopathology of Cancer</u>, 2nd ed., edited by F. Homburger, Harper, New York, 1959, Chapter 14.
- 2. Jones, D. W. and Mathews, R. S., Prog. Med. Chem. <u>10</u>, 159 (1974).
- 3. Blumer, M., Scientific American 234 (3), 34 (1976).
- 4. Hoffmann, D. and Wynder, E. L., <u>Analytical and Biological Studies on Gasoline Engine Exhaust</u>, Nat. Cancer Inst. Monogr. 9:91-116, 1962
- 5. Long, R., <u>Studies on Polycyclic Aromatic Hydrocarbons in Flames</u>, U.S. N.T.I.S. No. PB-220151, 1972.
- 6. Boden, H., J. Chrom. Sci. 14, 391 (1976).
- 7. Matsushita, H. and Arashideni, K., Bunscki Kagaku 25, 76 (1976).
- Guerin, M. R., Griest, W. H., Ho, C. H., Shults, W. D., in <u>Third ERDA Environmental Protection Conference</u>, Oak Ridge, TN, Sept. 1975.
- 9. Koppenaal, D. W. and Manahan, S. E., Environ. Sci. Technol. 10, 1104 (1976).
- 10. <u>Particulate Polycyclic Organic Matter</u>, National Academy of Sciences, Washington, DC, 1972.
- 11. Kolanecki, L. and Skucinski, S., Rocz. Pomorskiej Akad. Med. Szezecinie (Suppl. 2), 177 (1968).
- 12. Skucinski, S. and Kolanecki, L., Rocz. Pomorskiej Akad. Med. Szezecinie (Suppl. 2), 167 (1968).
- Woo, C. S., D'Silva, A. P., Fassel, V. A., Oestreich, G. J., Environ. Sci. Technol. <u>12</u>, 173 (1978).
- 14. Natusch, D. F. S. and Wallace, J. R., Science <u>186</u>, 695 (1974).
- 15. Borneff, J., Der Landarzt 40, 109 (1964).
- 16. Shabad, L. M., Vestn. Akad. Med. Nauk SSR <u>27</u>, 35 (1972).

- 17. Panalaks, T., J. Environ. Sci. Health <u>b11</u>, 299 (1976).
- Howard, J. W., Fazio, T., White, R. H., Klimeck, E. A.,
 J. Ass. Off. Anal. Chem. <u>51</u>, 122 (1968).
- 19. Freudenthal, R. I., Lutz, G. A. and Mitchell, R. I., Carcinogenic Potential of Coal and Coal Conversion Products, Battelle Columbus Laboratories, Ohio, 1975.
- 2C. White, C. E. and Argauer, R. J., <u>Fluorescence Analysis</u>, Marcel Dekker, New York, 1970, Chapter 12.
- 21. Albagli, A., Oja, H., Dubois, L., Environ. Lett. <u>6</u>, 241 (1974).
- 22. Blumer, M. and Youngblood, W. W., Science <u>188</u>, 53 (1975).
- 23. Severson, R. F., Snook, M. E., Arrendale, R. F., Chortyk, O. T., Anal. Chem. <u>48</u>, 1866 (1976).
- 24. Jones, P. W., Grammar, R. D., Strup, P. E., Stanford, T. B., Environ. Sci. Technol. <u>10</u>, 806 (1976).
- 25. Lijinsky, W., Chestnut, A., Raha, C. R., Chicago Medical School Quarterly 21, 49 (1960).
- 26. Birks, J. B., <u>Photophysics of Aromatic Molecules</u>, Wiley-Interscience, London, 1970.
- 27. Eberly, J. H., McColgin, W. C., Kawaoka, K., Marchetti, A. P., Nature <u>251</u>, 215 (1974).
- 28. Szabo, A., Phys. Rev. Lett. <u>25</u>, 924 (1970).
- 29. McClure, D. S., Solid State Phys. 8, 1 (1959).
- 30. Meyer, B., <u>Low Temperature Spectroscopy</u>, American Elsevier, New York, 1971.
- 31. Craig, D. D. and Walmsley, S. H., <u>Excitons in Molecular Crystals</u>, W. A. Benjamin, New York, 1968.
- 32. Brown. J. C., Edelson, M. C., Small, G. J., Anal. Chem. 50, 1394 (1978).
- 33. Shpol'skii, E. V., Il'ina, A. A. and Klimova, L. A., Dokl. Akad. Nauk SSSR <u>87</u>, 935 (1952).
- 34. Shpol'skii, E. V., Soviet Phys. Usp. 3, 372 (1960).

- 35. Shpol'skii, E. V., Soviet Phys. Usp. 6, 411 (1963).
- 36. Shpol'skii, E. V. and Bolotnikova, T. N., Pure and Appl. Chem. <u>37</u>, 183 (1974).
- 37. Muel, B. and Lacroix, G., Bull. Soc. Chim. Fr. 2139 (1960).
- 38. Personov, R. I. and Teplitskaya, T. A., Zh. Anal. Khim. 20, 1125 (1965).
- 39. Dikun, P. P., Zh. Prik. Spektrosk. 6, 202 (1967).
- 40. Kirkbright, G. F. and DeLima, C. D., Analyst <u>99</u>, 338 (1974).
- 41. Lukasiewicz, R. J. and Winefordner, J. D., Talanta 19, 381 (1972).
- 42. Winefordner, J. D., Schulman, S. G., O'Haver, T. C., <u>Luminescence Spectrometry in Analytical Chemistry</u>, Wiley-Interscience, New York, 1972.
- 43. Fassel, V. A., DeKalb, E. L. and D'Silva, A. P. in Analysis and Application of Rare Earth Materials, edited by O. B. Michelson, NATO Advanced Study Institute, Kjeller, Norway, Universitetsforlaget, 1973, pp. 109-122.
- 44. Goldstein, S. A., D'Silva, A. P. and Fassel, V. A., Radiat. Res. <u>59</u>, 422 (1974).
- 45. D'Silva, A. P., Oestreich, G. J. and Fassel, V. A., Anal. Chem. <u>48</u>, 915 (1976).
- 46. Birks, J. B., <u>The Theory and Practice of Scintillation</u> <u>Counting</u>, Pergamon Press Ltd., Oxford, 1967.
- 47. Kaelble, E. F., <u>Handbook of X-rays</u>, McGraw-Hill Book Company, New York, 1967.
- 48. Fisher, R. P. and Winefordner, J. D., Anal. Chem. <u>44</u>, 948 (1972).
- 49. St. John, P. A. and Winefordner, J. D., Anal Chem. <u>39</u>, 500 (1967).
- 50. Winefordner, J. D., Accounts of Chem. Res. 2, 361 (1969).

- 51. DeKalb, E. L., Fassel, V. A., Taniguchi, T., Saranathan, T. R., Anal. Chem. <u>40</u>, 2082 (1968).
- 52. Scranton, D. G. and Manchester, E. F., U. S. Atomic Energy Commission, Report No. IS-2305, 1971.
- 53. Korthoven, P. J. M. and Carlsen, F. S., U. S. Atomic Energy Commission, Report No. IS-1501, 1967.
- 54. McClure, D. S., J. Chem. Phys. 17, 905 (1949).
- 55. Colby, J. W. in <u>Proceedings Sixth National Conference on Electron Probe Analysis</u>, Pittsburgh, Pennsylvania, 1971, pp. 17A-17B.
- 56. Leverenz, H. W. in <u>An Introduction to Luminescence of Solids</u>, Dover Pulications Inc., New York, 1968, p. 220.
- 57. Kalnicky, D. J., Ph.D. thesis, Iowa State University, 1977.
- 58. Pfister, C., Chem. Phys. 2, 171 (1973).
- 59. Pfister, C., Chem. Phys. 2, 181 (1973).
- 60. Colmsjo, A. and Stenberg, U., Chemica Scripta 9, 227 (1976).
- 61. Dekkers, J. J., Hoornweg, G. P., Visser, G., Maclean, C., Velthorst, N. H., Chem. Phys. Lett. <u>47</u>, 357 (1977).
- 62. Kasha, M., J. Chem. Phys. 20, 71 (1952).
- 63. Dreeskamp, H. and Zander, M. in <u>Fifth Annual Symposium</u> on <u>Recent Advances in Analytical Chemistry of Pollutants</u>, Jeckyll Island, Georgia, 1975.
- 64. Aaron, J. J., Mousa, J. J., Winefordner, J. D., Talanta 20, 279 (1973).
- 65. Jakovljevic, I. M., Anal. Chem. 49, 2048 (1977).
- 66. Vo-Dinh, T., Yen, E. L., Winefordner, J. D., Anal. Chem. 48, 1186 (1976).
- 67. Seybold, P. G. and White, W., Anal. Chem. <u>47</u>, 1199 (1975).
- 68. Fortier, S. H. and Eastwood, D., Anal. Chem. <u>50</u>, 334 (1978).

ACKNOWLEDGMENTS

I wish to thank Dr. Velmer A. Fassel and Mr. Arthur P. D'Silva for their guidance and critical review of the work presented in this dissertation. The ideas and suggestions of my co-workers and fellow graduate students also contributed to this research.

I am grateful for the many hours spent in conversation with George Holland of the Ames Laboratory Instrument Services Group. His expertise clarified many problems and made the virtual link between the medical x-ray unit and the minicomputer a reality.

The financial assistance granted me by Salsbury

Laboratories, Charles City, Iowa and the U. S. Department of

Energy, Division of Environmental Research and Development is

greatly appreciated.

I would like to express my appreciation for the love, guidance and encouragement I received from my parents, Kenneth and Lorraine Oestreich. I also wish to thank LaVern and Mary Dellwo for their support over the years I have known their daughter.

Above all, I thank my wife Barbara for her love, support and patience. Her encouragement and understanding made this dissertation possible. May I repay her many times over for the many sacrifices she cheerfully made over the past several years.

APPENDIX 1: TRS3

TRS3 is the FL/1 program which reads the experimental data from disc and generates the output data set which is the input data for SMASH. The PL/1 program translates data from a format specified by the assembly language program which runs on the PDP8/E minicomputer to data in the proper format for SMASH. Execution of TRS3 is the first major step in the job which calculates experimental results. TRS3 is run automatically by the WYLBUR execute file which appears in Appendix 6. The operation of TRS3 is controlled by a group of input variables which specify the number of experiments which were performed and the mode of the pulsed XEOL system employed for each experiment. If the slow mode is specified TES3 plots the decay curve with Simplotter. Simplotter is accessed by the CALL GRAPH and CALL GRAPHS statements which appear in the listing. A CALL ORIGIN statement, one of the Simplotter options, is used to move the position of the graph on the paper on which the graph is plotted. A listing of the source statements of TRS3 is given on the following pages.

```
(STRG, SUBRG):
CORE: PROCEDURE OPTIONS (MAIN):
      DCL GRAPH ENTRY (FIXED BIN, (*) FLOAT, (*) FLOAT,
               FIXED BIN, FIXED BIN, FLOAT, FLOAT, FLOAT,
               FLOAT, FLOAT, FLOAT, CHAR (20), CHAR (20),
               CHAR (20), CHAR (20));
      DCL GRAPHS ENTRY (FIXED BIN, (*) FLOAT, (*) FLOAT,
               FIXED BIN, FIXED BIN, CHAR (20));
      DCL ORIGIN ENTRY (FLOAT, FLOAT, FIXED BIN);
      DCL IN FILE INPUT:
      DCL OUT FILE OUTPUT ENVIRONMENT (CONSECUTIVE);
      DCL OPTION (50) FIXED:
      DCL (REJECT, INPUT) CHAR (80);
      DCL (X1 (POINTS), Y1 (POINTS), CORRECT (POINTS),
               ADDRESS (POINTS) ) FLOAT CONTROLLED;
      DCL (SUMSQR (POINTS), VAR (POINTS)) FLOAT CONTROLLED:
      DCL (LAB1, LAB2) CHAR (20);
      DCL COMP (NCOMP) FLOAT CONTROLLED;
      DCL (DATE, TIME) CHAR(6);
      DCL (RUNS, PASSES, NUMWAV, POINTS) FIXED BIN;
      DCL (HEAD, XLAB, YLAB, GLAB, DATLAB) CHAR (80);
      CALL ORIGIN (0.0, 1.0, 1):
      GET FILE (IN) LIST (RUN);
      DO I=1 TO RUN:
              GET FILE (IN) LIST (OPTION(I));
      END:
      RUNCNT=RUN:M=1:
GETIN: GET EDIT (REJECT) (COL(1), A (70)) COPY;
      GET EDIT (INPUT) (COL(1), A (63)) COPY;
      GET STRING (INPUT) EDIT (DATE, TIME, RUNS, NUMWAV,
              PASSES, POINTS, LUMIN) (A(6), X(2), A(4),
              X(2), 5(F(5), X(2));
      IF LUMIN=1 THEN
              GET STRING (INPUT) EDIT (DELTIM, RANGE)
               (X(49), 2(F(5), X(2)));
      J=1:
      ALLOCATE Y1(POINTS):
INDAT: GET EDIT (INPUT) (COL(1), A (70)) COPY;
      DO I=1 TO 7:
              GET STRING (SUBSTR(INPUT, (10*I-9),8)) EDIT
               (Y1(J)) (F(8));
              IF J=POINTS THEN GO TO ENDIN;
              J=J+1;
      END:
      IF J-=POINTS+1 THEN GO TO INDAT:
FNDIN:RUNCNT=BUNCNT-1:
      J=1:
      Y1 = -Y1:
      ALLOCATE CORRECT (POINTS);
      ALLOCATE ADDRESS (POINTS):
```

```
CORIN:GET EDIT (INPUT) (COL(1), A (70)) COPY:
      DO I=1 TO 5:
              GET STRING (SUBSTR (INPUT, (14*I-13), 14)) EDIT
               (CORRECT(J), ADDRESS(J)) (2(F(5),X(2)));
              IF CORRECT (J) = 0 THEN GO TO CORR;
              J=J+1:
      END:
      IF CORRECT (J-1) -= 0 THEN GO TO CORIN;
CORR: ALLOCATE SUMSOR (POINTS):
      J=1:
INSQR:GET EDIT (INPUT) (COL(1), A (70)) COPY;
      DO I=1 TO 7:
              GET STRING (SUBSTR (INPUT, (10*I-9), 8)) EDIT
              (SUMSQR(J)) (F(8)):
              IF J=POINTS THEN GO TO ENDSQR;
              J=J+1:
      END:
      IF J-=POINTS+1 THEN GO TO INSOR:
ENDSOR: DO I=1 TO FOINTS:
      IF CORRECT (I) = 0 THEN GO TO ENDIT:
      SUMSOR (ADDRESS (I)) = SUMSOR (ADDRESS (I)) +
              CORRECT (I) *16777216;
      END:
ENDIT: FREE CORRECT:
      FREE ADDRESS:
      IF LUMIN=O THEN GO TO FAST:
      ALLOCATE VAR (POINTS):
      VAR=ABS (SUMSQR-Y1**2/PASSES) / (PASSES-1);
     FREE SUMSOR:
     CHECK=999:
     DO I=1 TO POINTS:
              IF VAR (I) = 0 THEN CHECK=MIN(CHECK, VAR (I)):
     END:
     DO I=1 TO POINTS:
              IF VAR (I) = 0 THEN VAR (I) = CHECK;
     END:
     Y1=Y1/PASSES:
     ALLOCATE X1(POINTS):
     X1(1)=0;
     IF RANGE=1 THEN RANVAL=0.01:
              ELSE IF RANGE=2 THEN RANVAL=0.1;
              ELSE RANVAL=1:
     DO I=2 TO FOINTS:
              X1(I) = X1(I-1) + RANVAL;
     END:
     GET FILE (IN) EDIT (LAB1, LAB2) (COL(1), 2(A(20)));
     CALL ORIGIN (11.0,0.0,1);
     CALL GRAPH (POINTS, X1, Y1, 1, 7, 9, 7, 0, 0, 0, 0,
                     (SEC) ', 'INTENSITY', LAB1, LAB2):
              TIME
```

```
IF OPTION(M) = 1 THEN GO TO SMASH:
DUMP: PUT PAGE:
       PUT SKIP LIST ('TRS2 DATA DUMP'):
       PUT SKIP LIST ('DATE', DATE, 'TIME', TIME, 'RUN NO.',
               RUNS);
      PUT SKIP LIST ('NUMBER OF PASSES', PASSES,
               *NUMBER OF XRAY WAVES *, NUMWAV);
      IF LUMIN=0 THEN GO TO CONT1:
      PUT SKIP LIST ('TRANSIENT DECAY TIME (USEC)', (DELTIM*
               5+10), INTEGRATION TIME (MSEC) (10**RANGE));
      PUT SKIP:
      PUT SKIP LIST ('THE TIME VALUES ARE: '):
      PUT SKIP LIST (X1):
CONT1: PUT SKIP:
      PUT SKIP LIST ('THE INTENSITY VALUES ARE:');
      PUT SKIP LIST (Y1):
      PUT SKIP:
      PUT SKIP LIST ('THE VARIANCE VALUES ARE:');
      PUT SKIP LIST (VAR);
      PUT PAGE:
      M = M + 1:
      IF RUNCHT-=0 THEN GO TO GETIN;
      PUT FILE (OUT) SKIP:
      GO TO STOP:
SMASH: AVE=0:IFIRST=0:DEADT=0.0:SIGMAB=0.0;
      DO I=1 TO 10:
               AVE=AVE+Y1 (POINTS+1-I):
      END:
      BACKGR=AVE/10:
      GET FILE (IN) EDIT (ISMASH) (COL(1), F(2)):
      DO I=1 TO ISMASH:
               GET FILE (IN) EDIT (NCOMP, INPU, IPLOT)
               (COL(1), 3(F(5))):
               PUT FILE (OUT) EDIT (NCOMP, POINTS, IFIRST,
               INPU, DEADT, BACKGR, SIGMAB, IPLOT)
               (CCL(1), 4(F(5)), 3(F(12,3)), X(19), F(5));
               GET FILE (IN) EDIT (HEAD) (COL(1), A(80));
PUT FILE (OUT) EDIT (HEAD) (COL(1), A(80));
               IF IPLOT=0 THEN GO TO CONT3;
               GET FILE (IN) EDIT (XLAB, YLAB, GLAB, DATLAB)
               (COL(1), 4(A(20))):
               PUT FILE (OUT) EDIT (XLAB, YLAB, GLAB, DATLAB)
               (COL(1), 4(A(20)));
CCNT3:
               ALLOCATE COMP (NCOMP):
               GET FILE (IN) EDIT (COMP) ((NCOMP) (F(10,3)));
               PUT FILE (OUT) EDIT (COMP) (COL(1), (NCCMP)
               (F(10,3)):
               FREE COMP;
               IF INPU<0 THEN GO TO CONT4;
               PUT FILE (OUT) EDIT (Y1) (COL(1),6 E(12,5));
```

```
PUT FILE (OUT) EDIT (X1) (COL(1),6 E(12,5));
              PUT FILE (OUT) EDIT (VAR) (COL(1),6 E(12,5));
CCNT4: END:
      GO TO DUMP:
FAST: AVE=SUM(Y1)/POINTS;
      VARI=0;
      DO I=1 TO FCINTS;
              VARI=VARI+((Y1(I)-AVE)**2);
      END:
      VARI=VARI/ (POINTS-1);
      STAND=SQRT (VARI):
      PUT SKIP LIST ('THE AVERAGE VALUE IS: ', AVE);
      PUT SKIP LIST ('THE STANDARD DEVIATION IS: ', STAND);
      PUT SKIP:
      GO TO DUMP:
STOP: END CORE:
```

APPENDIX 2: SMASH

SMASH is a FORTRAN IV program which determines decay constants for single component decay curves and initial intensities for each component in a multiple component decay curve. The operation of SMASH is described elsewhere (53). Several modifications were made on the input routines and declaration statements to facilitate the execution of the program for the analysis of spectroscopic data. SMASH is the second major step in the job which calculates experimental results. A listing of SMASH with the modifications appears on the following pages.

```
C
C
       SMASH, A PROGRAM FOR THE ANALYSIS OF DECAY CURVES,
C
       BY P.J.M. KCRTHOVEN AND F.S. CAPLSEN
       CALL SMASH1
       STOP
       END
       SUBROUTINE SMASH1
       DIMENSION IPAR (10), SSIZE (10), X (10), Y (10)
       REAL LAMBDA (10)
       COMMON NSTEPS, NCOMP, FIT2, IFIRST, SSIZE, LAMBDA, ORFIT,
      1NVAR, FIT1
    1 NSTEPS=0
       KOUNT=0
      CALL SMINP1
      IF (NCOMP) 2,63,2
    2 ICONV=NVAR*400
    3 KOUNT=KOUNT+1
      DO 4 I=1, NCOMP
    4 IPAR(I) = 0
      IA = 0
      IB=0
      CALL SMFIT1
      FIT 1=FIT2
      IF (NVAR) 6,5,6
    5 IFIRST=0
    6 IF (IFIRST) 10,7,10
    7 CALL SMOUT1 (1)
      IFIRST=1
      IF (NVAR) 8,1,8
    8 IF (KOUNT-1) 10,9,10
    9 ORFIT=FIT2
   10 TEMFIT=FIT2
   11 FIT1=TEMFIT
C
C
      INITIAL SEARCH
C
      DO 25 I=1, NCOMP
      X(I) = LAMBDA(I)
      IF (SSIZE(I)) 13,12,13
   12 IPAR(I)=0
      GO TO 25
   13 LAMBDA(I) = LAMBDA(I) + SSIZE(I)
      CALL SMFIT1
      IF (NSTEPS-ICONV) 14, 14, 62
   14 IF (FIT2-FIT1) 15,20,20
   15 IF (IPAR(I) - 2) 16, 17, 16
   16 IPAR(I) = 0
   17 IF (ABS(FIT2-FIT1)-0.000001) 19,18,18
   18 IB=1
```

```
IPAR(I) = 1
    19 FIT1=FIT2
       GO TO 25
   20 LAMBDA(I)=X(I)-SSIZE(I)
       CALL SMFIT1
       IF (NSTEPS-ICONV) 21,21,62
   21 IF (FIT2-FIT1) 22,23,23
   22 SSIZE(I) = -SSIZE(I)
       GO TO 15
   23 LAMBDA(I) =X(I)
       IF (IPAR(I)-2) 24,25,24
   24 IPAR(I) = 0
   25 CONTINUE
C
C
       END INITIAL SEARCH
   26 DO 27 I=1,NCOMP
       IF (IPAR(I)-1) 27,38,27
   27 CONTINUE
       IF (IB) 28,33,28
   28 DO 32 I=1,NCOMP
      IF (IPAR(I)-2) 30, 29, 30
   29 SSIZE (I) = SSIZE (I) *0.2
      IPAR(I) = 0
   30 IF (ABS(SSIZE(I))-0.00002*LAMBDA(I)) 31,32,32
   31 SSIZE (I) = 0.0
   32 CONTINUE
      IB=0
      GO TO 58
   33 DO 34 I=1, NCOMP
      IF (ABS(SSIZE(I)) - 0.00002*LAMBDA(I)) 34,34,35
   34 CONTINUE
      IF (ABS(FIT1-FIT2)-0.000001) 61,3,3
   35 DO 37 I=1, NCCMP
      SSIZE(I) = SSIZE(I) *0.2
      IF (ABS(SSIZE(I)) - 0.00002*LAMBDA(I)) 36,37,37
   36 SSIZE (I) = 0.0
   37 CONTINUE
      GO TO 58
C
С
      ADJUST PARAMETERS FOR THE SELECTED SEARCH
   38 TEMFIT=FIT1
      DO 43 I=1, NCOMP
      TEMP=LAMBDA (I)
      IF (IPAR(I)-1) 40,39,40
   39 LAMBDA(I)=LAMBDA(I)*2.0-X(I)
   40 \times (I) = TEMP
      IF (IA-1) 41,43,41
   41 IPAR(I) = 0
```

```
IF (SSIZE(I)) 42,43,42
    42 IPAR(I)=1
    43 CONTINUE
       CALL SMFIT1
       IF (NSTEPS-ICONV) 44,44,62
   44 IF (FIT2-FIT1) 45,46,46
   45 FIT1=FIT2
C
       SELECTED SEARCH
С
   46 DO 54 I=1, NCOMP
       IF (IPAR(I)-1) 54,47,54
   47 Y(I) = LAMBDA(I)
       LAMBDA (I) = LAMBDA (I) + SSIZE (I)
      CALL SMFIT1
       IF (NSTEPS-ICONV) 48,48,62
   48 IF (FIT2-FIT1) 53,49,49
   49 LAMBDA(I)=Y(I)-SSIZE(I)
       CALL SMFIT1
       IF (NSTEPS-ICONV) 50,50,62
   50 IF (FIT2-FIT1) 51,52,52
   51 SSIZE(I) = -SSIZE(I)
       GO TO 53
   52 \text{ LAMBDA}(I) = Y(I)
       IPAR(I) = 2
      GO TO 54
   53 IA = 1
      IB=1
      FIT 1=FIT2
   54 CONTINUE
C
C
      END SELECTED SEARCH
C
      IF (FIT1-TEMFIT) 38,55,55
   55 DO 57 I=1, NCCMP
      IF (IPAR(I)-1) 57,56,57
   56 IPAR(I) = 2
   57 LAMBDA (I) =X (I)
      IA = 0
      GO TO 11
   58 IF (FIT2-TEMFIT) 10,59,59
   59 DO 60 I=1, NCCMP
   60 LAMBDA (I) =X (I)
      GO TO 11
   61 CALL SMOUT1 (0)
      GO TO 1
   62 CALL SMOUT1 (-1)
      GO TO 1
   63 STOP
      END
```

```
C
C
      SUBROUTINE INPUT
C
      SUBROUTINE SMINP1
      DIMENSION IDENT (20), HALFL (10), SSIZE (10), XLAB (5),
     1YLAB(5), DATLAB(5), GLAB(5), TM(1000), RATE(1000),
     2DIFF(1000), ACALC(1000), AO(10), C(10, 10), P(1000, 10),
     3BGRND (1000), SIGMBG (1000), RAVAR (1000), DFIT (10),
     4VAR (1000) COUNTS (1000) DELTAT (1000) WDIFF (1000),
     5X(10), HL(10)
      REAL LAMBDA (10)
      INTEGER DF
      COMMON NSTEPS, NCOMP, FIT2, IFIRST, SSIZE, LAMBDA, ORFIT,
     1IDENT, TM, RATE, VAR, XLAB, YLAB, GLAB, DATLAB, IPLOT, COUNTS,
     2ACALC, DIFF, DF, HL, AO, C, P, WDIFF, KS, DEADT, BACKGR, SIGMAB,
     3RAVAR, IWRIT, FIT1, NVAR, DELTAT, NP, HALFL, TO
      NV A R= 0
      READ (5,101) NCOMP, NP, IFIRST, INPU, DEADT, BACKGR, SIGMAB,
     1IDUAL, IPLOT
  101 FORMAT (415,3F12.3,14X,215)
      IF (IPLOT) 116,115,116
  116 CALL ORIGIN (0.0,0.0,0)
      CALL ORIGIN (0.0, 1.0, 1)
  115 IF (NCOMP) 102,145,102
  102 READ (5, 103) (IDENT(I), I=1, 20)
  103 FORMAT (20A4)
      IF (IPLOT) 104, 105, 104
  104 READ (5,103) XLAB, YLAB, GLAB, DATLAB
  105 READ (5, 106) (HALFL (I), I=1, NCOMP)
  106 FORMAT (8F10.3)
      IF (INPU) 129,112,111
  111 NCOMP=0
      GO TO 145
  112 READ (5,126) (COUNTS (I), I=1, NP)
      READ (5, 126) (TM(I), I=1, NP)
      READ (5,126) (VAR (I), I=1, NP)
  126 FORMAT (6E12.5, 8X)
  113 DO 127 I=1, NP
      RATE(I) = COUNTS(I) - BACKGR
      RAVAR (I) = RATE(I) / VAR(I)
      DELTAT (I) =TM (I)
  127 CONTINUE
      DO 128 I=2, NP
  128 \text{ TM}(I) = \text{TM}(I) - \text{TM}(1)
      TO=TM(1)
      TM(1) = 0.0
  129 DO 130 I=1, NCGMP
      IF (HALFL(I)) 220,230,220
 230 LAMBDA(I)=0.0
      GO TO 130
```

```
220 LAMBDA(I) = ABS (HALFL(I))
130 CONTINUE
     IF (NCOMP-1) 107, 107, 108
108 \text{ XN} = 0.0
     IWRIT=1
    CALL SMFIT1
     FIT 1=FIT2
     DO 131 I=1, NCOMP
     X(I) = LAMBDA(I)
    IF (HALFL(I)) 132,136,136
132 XX=LAMBDA (I) *0.05
    LAMBDA(I) = LAMBDA(I) + XX
    CALL SMFIT1
    IF (FIT2-FIT1) 133,134,134
134 LAMBDA (I) = LAMBDA (I) -2.0*XX
    CALL SMFIT1
    IF (FIT2-FIT1) 133,136,136
133 DFIT(I)=FIT1-FIT2
    GO TO 135
136 DFIT(I) = XN - 1.0
135 LAMBDA (I) = X(I)
131 CONTINUE
    DO 140 I=1, NCOMP
    K=NCOMP-1
    DO 140 J=1, K
    IF (DFIT(J) - DFIT(J+1)) 141, 140, 140
141 SWAP=DFIT(J)
    DFIT(J) = DFIT(J+1)
    DFIT(J+1) = SWAP
    SWAP=LAMBDA (J)
    LAMBDA (J) = LAMBDA (J+1)
    LAMBDA (J+1) = SWAP
    SWAP=HALFL(J)
    HALFL(J) = HALFL(J+1)
    HALFL(J+1) = SWAP
140 CONTINUE
107 IWRIT=0
    NSTEPS=0
    DO 142 I=1, NCOMP
    IF (HALFL(I)) 143,144,144
143 SSIZE (I) = 0.05 \times LAMBDA (I)
    NVAR=NVAR+1
    GO TO 142
144 SSIZE (I) = 0.0
142 CONTINUE
145 RETURN
    END
    SUBROUTINE FIT
```

C

C

```
SUBROUTINE SMFIT1
      DIMENSION TM (1000), P (1000, 10), V (10), RATE (1000),
     1AO(10), ACALC(1000), DIFF(1000), HL(10), IDENT(20),
     2YLAB(5), GLAB(5), DATLAB(5), COUNTS(1000), DELTAT(1000),
     3HALFL (10), RAVAR (1000), CC (10, 10), PAR (10), WDIFF (1000),
     4XLAB(5), SSIZE(10), VAR(1000), C(10, 10)
      REAL LAMBDA (10)
      INTEGER DF
     COMMON NSTEPS, NCOMP, FIT2, IFIRST, SSIZE, LAMBDA, ORFIT,
     1IDENT, TM, RATE, VAR, XLAB, YLAB, GLAB, DATLAB, IPLOT, CCUNTS,
    2ACALC, DIFF, DF, HL, AO, C, P, WDIFF, KS, DEADT, BACKGR, SIGMAB,
    3RAVAR, IWRIT, FIT 1, NVAR, DELTAT, NP, HALFL, TO
      NSTEPS=NSTEPS+1
      IF (NSTEPS-1) 700,701,700
 701 DO 702 I=1, NCOMP
 702 \text{ PAR}(I) = 1.0E60
 700 DO 2031 J=1, NCOMP
      IF (PAR (J) -LAMBDA (J)) 300,2031,300
 300 DO 203 I=1, NP
     DECAYF=-LAMBDA (J) *TM (I)
     IF (ABS(DECAYF) - 50.0) 202,201,201
 201 P(I,J) = 0.0
     GO TO 203
 202 P(I_J) = EXP(DECAYF)
 203 CONTINUE
2031 CONTINUE
     DO 204 I=1, NCOMP
     IF (PAR(I)-LAMBDA(I)) 320,204,320
 320 V(I) = 0.0
     DO 204 K=1, NP
     V(I) = V(I) + P(K,I) * RAVAR(K)
 204 CONTINUE
     DO 2051 I=1, NCOMP
     DO 2051 J=1, NCOMP
     IF (PAR (I) - LAMBDA (I)) 2205, 2206, 2205
2206 IF (PAR (J)-LAMBDA (J)) 2205,2207,2205
2207 C(I,J) = CC(I,J)
     GO TO 2051
2205 C(I_{\bullet}J) = 0.0
     DO 205 K=1, NP
     C(I,J) = C(I,J) + P(K,I) * P(K,J) / VAR(K)
 205 \ CC (I,J) = C (I,J)
2051 CONTINUE
     DO 2500 I=1, NCOMP
2500 PAR (I) = LAMBDA (I)
     CALL SMATNV (C, NCOMP, DETERM)
     DO 206 I=1, NCCMP
     AO(I) = 0.0
     DO 206 J=1, NCOMP
206 A0 (I) = A0 (I) +C (I, J) *V (J)
```

```
RS=0.0
       DO 208 I=1, NP
       ACALC(I) = 0.0
       DO 207 J=1, NCOMP
   207 ACALC(I) = ACALC(I) + P(I,J) * AO(J)
       DIFF(I) = RATE(I) - ACALC(I)
       RS=RS+DIFF(I)**2/VAR(I)
  208 CONTINUE
       DF = NP - NCOMP
       XDF=DF
       FIT2=SQRT (RS/XDF)
  IF (IWRIT) 217,751,217
751 DO 211 I=1,NCOMP
       IF (LAMBDA(I)) 210,209,210
  209 \text{ HL (I)} = 0.0
       GO TO 211
  210 HL(I) = LAMBDA(I)
  211 CONTINUE
       IF (NSTEPS-1) 215,212,215
  212 IF (IFIRST) 213,217,213
  213 WRITE (6,21/) (I,I=1,NCOMP)
  214 FORMAT (1H1,5H STEP,6X,3HFIT,9X,9(1H-,I1,1H-,8X),1H-,
      1I2, 1H-/1H0)
  215 WRITE (6,216) NSTEPS, FIT2, (HL(I), I=1, NCOMP)
  216 FORMAT (I5, F13.6, 9F11.4, F12.4)
  217 RETURN
      END
C
C
       SUBROUTINE MATINV
C
      SUBROUTINE SMATNV (A,N,DETERM)
      DIMENSION A (10, 10), PIVOT (10), INDEX (10, 2), IPIVOT (10)
      EQUIVALENCE (IROW, JROW), (ICOLUM, JCOLUM), (AMAX, T, SWAP)
C
C
      INITIALIZATION
C
      DETERM=1.0
      DO 301 J=1, N
  301 IPIVOT(J)=0
      DO 314 I=1.N
C
C
      SEARCH FOR PIVOT ELEMENT
C
      AMAX=0.0
      DO 306 J=1, N
      IF (IPIVOT(J)-1) 302,306,302
  302 DO 305 K=1, N
      IF (IPIVOT(K)-1) 303,305,318
  303 IF (ABS(AMAX)-ABS(A(J,K))) 304,305,305
  304 IROW=J
```

```
ICOLUM=K
       AMAX=A(J,K)
  305 CONTINUE
  306 CONTINUE
       IPIVOT (ICOLUM) = IPIVOT (ICOLUM) +1
C
С
       INTERCHANGE ROWS TO PUT PIVOT ELEMENT ON DIAGONAL
C
       IF (IROW-ICOLUM) 307,309,307
  307 DETERM = - DETERM
       DO 308 L=1, N
       SWAP=A (IROW,L)
       A(IROW, L) = A(ICOLUM, L)
  308 A (ICOLUM, L) = SWAP
  309 INDEX (I, 1) = IROW
       INDEX (I,2) = ICOLUM
       PIVOT (I) = A (ICOLUM, ICOLUM)
       DETERM=DETERM*PIVOT(I)
C
C
       DIVIDE PIVOT ROW BY PIVOT ELEMENT
C
       A (ICOLUM, ICOLUM) = 1.0
       DO 310 L=1, N
  310 A(ICOLUM, L) = A(ICOLUM, L)/PIVOT(I)
C
C
      REDUCE NON-PIVOT ROWS
C
  311 DO 314 L1=1,N
      IF (L1-ICOLUM)
                       312,314,312
  312 T=A (L1,ICOLUM)
      A(L1,ICOLUM) = 0.0
      DO 313 L=1, N
  313 A(L1,L) = A(L1,L) - A(ICOLUM,L) *T
  314 CONTINUE
C
C
      INTERCHANGE COLUMNS
C
      DO 317 I=1, N
      L=N+1-I
      IF (INDEX(L,1)-INDEX(L,2)) 315,317,315
  315 JROW=INDEX(L, 1)
      JCOLUM=INDEX(L,2)
      DO 316 K=1, N
      SWAP=A(K,JROW)
      A(K_JROW) = A(K_JCOLUM)
      A (K, JCOLUM) = SWAP
  316 CONTINUE
  317 CONTINUE
  318 RETURN
      END
```

```
С
      SUBROUTINE OUTPUT
С
      SUBROUTINE SMOUT1 (ICASE)
      DIMENSION DATLAB(5), AO(10), P(1000, 10), SAZERO(10),
     1IDENT (20) SRELAT (10) WDIFF (1000) HALFL (10) HL (10)
     2DELTAT(1000), COUNTS(1000), RATE(1000), ACALC(1000),
     3XLAB(5), YLAB(5), GLAB(5), THALFL(10), TEMPHL(5),
     4SSIZE (10), TM (1000), CORR (10), DIFF (1000), VAR (1000),
     5AZERO (10) .C (10, 10)
      REAL LAMBDA (10), LOGACT (1000), LOGFC (1000)
      INTEGER DF
      COMMON NSTEPS, NCOMP, FIT2, IFIRST, SSIZE, LAMBDA, ORFIT,
     1IDENT, TM, RATE, VAR, XLAB, YLAB, GLAB, DATLAB, IPLOT, COUNTS,
     2ACALC, DIFF, DF, HL, AO, C, P, WDIFF, KS, DEADT, BACKGR, SIGMAB,
     3HALFL, TO, DELTAT, NP, FIT1, NVAR
      EQUIVALENCE (LOGACT(1), WDIFF(1)), (LOGFC(1), ACALC(1))
      DO 400 I=1.NP
  400 \text{ TM (I)} = \text{TM (I)} + \text{TO}
      DO 401 I=1, NCOMP
      CORR(I) = EXP (TO*LAMBDA(I))
      AZERO(I) = AO(I) * CORR(I)
      SAZERO (I) = SQRT(C(I,I))*CORR(I)*FIT1
  401 SRELAT (I) = SAZERO(I) / AZERO(I) * 100.0
      IPERC1=0
      IPERC2=0
      IPERC3=0
      DO 406 I=1, NP
      VAR(I) = SQRT(VAR(I))
      WDIFF(I) = DIFF(I) / VAR(I)
      IWDIFF=IABS(IFIX(WDIFF(I)))+1
      IF (ABS(WDIFF(I))-3.0) 402,403,403
  402 GO TO (406,404,405), IWDIFF
 403 IPERC3=IPERC3+1
      GO TO 406
 404 IPERC1=IPERC1+1
      GO TO 406
 405 IPERC2=IPERC2+1
 406 CONTINUE
      PERC1=FLOAT (IPERC1+IPERC2+IPERC3) / FLOAT (NP) * 100.0
      PERC2=FLOAT (IPERC2+IPERC3)/FLOAT (NP) *100.0
      PERC3=FLOAT (IPERC3) / FLOAT (NP) * 100.0
      WRITE (6,407) (IDENT(I), I=1,20)
 407 FORMAT (1H1, 20A4)
      IF (ICASE) 408,410,414
 408 WRITE (6,409) NSTEPS
 409 FORMAT (86H THE SOLUTION IS NOT YET REACHED, OUTPUT IS
     1CALCULATED WITH THE PARAMETER VALUES AFTER, 15, 6H STEPS
     2/1H0)
     GO TO 412
```

```
410 WRITE (6,411)
411 FORMAT (45H RESULTS OBTAINED WITH FINAL PARAMETER
   1VALUES/1HO)
412 WRITE (6,413) NP, NSTEPS, NCOMP, PERC1, NVAR, DF, PERC2,
   2BACKGR, SIGMAB, PERC3, DEADT, ORFIT, FIT1
413 FORMAT (15x, 16HINPUT QUANTITIES, 50x, 17HOUTPUT QUANTITI
   1ES//12X,23H NUMBER OF DATA POINTS =, I5,56X,17HNUMBER OF
   2 STEPS =, I5/13X,22HNUMBER OF COMPONENTS =, I5, 23X, 50HPE
   3RCENTAGE OF POINTS DEVIATING MORE THAN 1 SIGMA = .F8.2/
   44X,31HNUMBER OF VARIABLE DECAY CONS =, 15,34X,28H (THEOR
   SETICAL VALUE = 31.74 ) /15x,20HDEGREES OF FREEDOM =,15
   6,23x,50HPERCENTAGE OF POINTS DEVIATING MORE THAN 2 SIG
   7MA = F8.2/7X, 28HBACKGROUND (COUNTS/MINUTE) = F9.1,30X,
   828H (THEORETICAL VALUE = 4.56 ) / 1H , 34HSIGMA BACKGROUN
   9D (COUNTS/MINUTE) = F7.1,21x,50HPERCENTAGE OF POINTS D
   SEVIATING MORE THAN 3 SIGMA =, F8.2/8X,27HDEAD TIME (MIC
   7RO SECONDS) = _{0}F7.1,32X,29H(THEORETICAL VALUE = 0.26)
   6//21X, 14HORIGINAL FIT =, F14.6,53X, 11HFINAL FIT =, F14.6
   5//1H0)
    IF (ICASE) 445,548,417
445 WRITE (6,447)
447 FORMAT (1H0/58X,17H*****WARNING*****/51X,30H*****CHECK
   1 YOUR ESTIMATES****/1H0/1H0)
    GO TO 448
548 NEG=0
    DO 442 I=1, NCOMP
    IF (AZERO(I)) 443,443,442
443 NEG=1
442 CONTINUE
    IF (NEG-1) 438,460,460
460 WRITE (6,444)
444 FORMAT (1H0/58x,17H****WARNING****/38X,56H****THE N
   1UMBER OF COMPONENTS IS PROBABLY TOO LARGE****/1H0)
    GO TO 448
438 IF (FIT2-2.0) 448,439,439
439 WRITE (6,440)
440 FORMAT (1HO/58X,17H****WARNING*****/38X,56H*****THE N
   1UMBER OF COMPONENTS IS PROBABLY TOO SMALL*****/1H0)
    GO TO 448
414 WRITE (6,415)
415 FORMAT (48H RESULTS OBTAINED WITH ORIGINAL PARAMETER
   1 VA LUES/1HO)
    DO 416 I=1, NCOMP
    TEMPHL(I) = HL(I)
    THALFL (I) = HALFL (I)
    HALFL(I) = ABS(HALFL(I))
416 HL (I) = 0.0
    FIT1=FIT2
    NV=NVAR
    NVAR=0
```

```
ORFIT=0.0
     GO TO 412
417 IF (NV) 448,449,448
449 IF (FIT1-2.0) 448,450,450
450 WRITE (6,447)
448 IF (ICASE) 420,420,418
418 NVAR=NV
420 WRITE (6,421)
421 FORMAT (1H0,22X,9HCOMPONENT,8X,8HORIGINAL,9X,5HFINAL,9
    1X,8HACTIVITY,9X,5HSIGMA,9X,5HSIGMA/39X,9HDECAY CON,7X,
    29HDECAY CON, 8X, 6HAT EOB, 8X, 8HABSOLUTE, 7X, 8HRFLATIVE//)
     WRITE (6,422) (I, HALFL(I), HL(I), AZERO(I), SAZERO(I),
    1SRELAT (I) ,I=1,NCOMP)
422 FORMAT (22X, 15, F21, 4, F16, 4, F16, 3, F14, 3, F13, 3)
     WRITE (6,423)
423 FORMAT (1H0///1H0)
424 WRITE (6,425)
425 FORMAT (8X,7HMIDTIME, 7X,4HTIME,10X,8HORIGINAL,8X,9HCO
    1RRECTED, 8X, 5HSIGMA, 8X, 10HCALCULATED, 9X, 8HABSOLUTE, 11X,
    210HDIFFERENCE/9X, 5HCOUNT, 6X, 8HINTERVAL, 10X, 4HDATA, 13X,
    34HRATE, 11X, 4HRATE, 11X, 4HRATE, 11X, 10HDIFFERENCE, 8X, 13H (
   4SIGNA UNITS) / 1HO)
    WRITE (6,426) (I, TM (I), DELTAT (I), COUNTS (I), RATE (I),
    1VAR(I), ACALC(I), DIFF(I), WDIFF(I), I=1, NP)
426 FORMAT (14,F10.6,F12.6,F18.1,F17.1,F14.1,F16.1,
    1F18.1, F18.3)
427 DO 428 I=1, NP
428 \text{ VAR}(I) = \text{VAR}(I) **2
    IF (IPLOT) 429,432,431
429 DO 430 I=1, NP
    IF (RATE(I)) 461,461,462
461 \text{ RATE}(I) = 1.0
462 LOGACT(I) = ALOG10 (RATE(I))
    IF (ACALC(I)) 463,463,464
463 \text{ ACALC}(I) = 1.0
464 LOGFC (I) = ALOG 10 (ACALC (I))
430 CONTINUE
    CALL ORIGIN (11.0,0.0,1)
    CALL GRAPH (NP, TM, LOGACT, 3, 7, 9., -7., 0, 0, 0, 0, XLAB, YLAB,
   1GLAB, DATLAB)
    CALL GRAPH (NP, TM, LOGFC, 3, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0)
    GO TO 432
431 CALL ORIGIN (11.0,0.0,1)
    CALL GRAPH (NP, TM, RATE, 3, 7, 9., 7., 0, 0, 0, 0, XLAB, YLAB,
   1GLAB, DATLAB)
    CALL GRAPH (NP, TM, ACALC, 3, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0)
432 IF (ICASE) 437,437,433
433 DO 419 I=1, NCOMP
    HL(I) = TEMPHL(I)
419 HALFL(I) =THALFL(I)
```

```
IF (NVAR) 434,437,434

434 WRITE (6,435) (I,I=1,NCOMP)

435 FORMAT (1H1,5H STEP,6X,3HFIT,9X,9(1H-,I1,1H-,8X),1H-,

112,1H-/1H0)

WRITE (6,436) NSTEFS,FIT2,(HL(I),I=1,NCOMP)

436 FORMAT (I5,F13.6,9F11.4,F12.4)

437 DO 446 I=1,NP

446 TM(I)=TM(I)-TO

RETURN
END
```

APPENDIX 3: GENPLOT

GENPLOT, a utility program for the generation of plots of general data, is a combination of a WYLBUR execute file and a PL/1 program. The execute file requests input information and data from the operator. The PL/1 program accesses Simplotter with CALL GRAPH and CALL GRAPHS statements. Logarithmic or linear plots can be generated. Several data sets can be plotted on the same graph and several graphs can be plotted at one time.

GENPLOT was used to plot calibration curves, decay curves, current, voltage and time relationships and other general data. The program was written to plot general data sets with many options of Simplotter available. Increased use of GENPLOT for examination of data trends and shapes of curves should be encouraged. The listing of the program follows on subsequent pages.

```
10
       SET EXEC NOL TERSE
 20
       SET ESC :
 25
       CLR TEXT
 30
      COPY 700/761 EXEC TO 1
 40
       REA VAL NO PRO 'NUMBER OF GRAPHS ?
 50
       CH "###" TO ":NO" N
 55
       SET VAL W0=100
       SET VAL N1=0
 60
       SET VAL N1=N1+1
 70
 60
       IF (N1 GT NO) EXEC 550
 90
       REA VAL N2 PRO 'NUMBER OF PLCTS ON GRAPH :N1 ? '
100
       :WO :N2
101
       SET VAL WO=WO+1
       SET VAL N3=0
1 10
130
      REA STR SO PRO 'X-AXIS LABEL ?
140
      :WO ':SO'
145
      SET VAL WO=WO+1
      REA STR SO PRO 'Y-AXIS LABEL ?
150
160
      :WO ':SO'
165
      SET VAL WO-WO+1
170
      REA STR SO PRO 'GRAPH LABEL ?
180
      :WO ':SO'
181
      SET VAL WO=WO+1
      REA STR SO PRO 'LIN=LINEAR CR LOG=LOGARITHMIC FLOT ? '
182
183
      : 40 ':50'
190
      SET VAL WO=WO+1
200
      SET VAL N3=N3+1
2 10
      IF (N3 GT N2) EXEC 70
220
      REA VAL N4 PRO 'HOW MANY POINTS IN PLOT :N3 ?
230
      REA VAL N5 PRO 'ENTER A NUMBER BETWEEN 1-13 !
240
      SET VAL SO=N4]| 11N5
250
      :W0 :S0
      SET VAL WO=WO+1
260
270
      SET VAL N5=0
274
      COMM ENTER X VALUES ONE AT A TIME
275
      SET VAL S1= "
280
      SET VAL N5=N5+1
285
      IF (N5 GT N4) EXEC 340
300
      REA STR SO PRO 'X(:N5) = '
310
      SET VAL S1=S1|| '||S0
320
      IF (SIZE(S1) LE 60) EXEC 280
330
      EXEC 500 SAVE
      IF (N5 EQ N4) EXEC 360
333
335
      EXEC 275
      :W0 :S1
340
350
      SET VAL WO=WO+1
360
      SET VAL N5=0
      COMM ENTER Y VALUES ONE AT A TIME
364
365
      SET VAL S1= ..
370
      SET VAL N5=N5+1
```

```
375
       IF (N5 GT N4) EXEC 430
 390
       REA STR SO PRO 'Y(:N5) = '
400
       SET VAL S1=S1|| '||S0
4 10
       IF (SIZE(S1) LE 60) EXEC 370
420
       EXEC 500 SAVE
423
       IF (N5 EQ N4) EXEC 450
425
       EXEC 365
430
       :W0 :S1
440
       SET VAL WO=WO+1
450
       REA STR SO PRO DATA LABEL ?
460
       :WO ':SQ'
470
       SET VAL WO=WO+1
480
       EXEC 200
500
       :W0 :S1
      SET VAL WO=WO+1
510
520
       EXEC RETURN
550
      COMM TO PLOT DATA TYPE EXEC NEXT
560
      EXEC PAUSE
570
      COPY 800/805 EXEC TO L+1
600
      RUN UNN
610
      EXEC PAUSE
700
      //A411GJO JOB A0099,GJO,TIME=(,29)
701
      //S1 EXEC PL1LFCG, PARM.PL1L='A, X, NEST', REGION.GC=128K
7C2
      //PL1L.SYSIN DD *
703
       PLOT: PROC OPTIONS (MAIN):
704
       DCL GRAPH ENTRY (FIXED BIN, (*) FLOAT, (*) FLOAT, FIXED
705
       BIN, FIXED BIN, FLOAT, FLOAT, FLOAT, FLOAT, FLOAT, FLOAT,
706
       CHAR (20), CHAR (20), CHAR (20), CHAR (20));
707
       DCL GRAPHS ENTRY (FIXED BIN, (*) FLOAT, (*) FLOAT, FIXED
708
       BIN, FIXED BIN, CHAR (20));
709
       DCL LETTRS ENTRY (FLOAT, FLOAT, FLOAT, CHAR (80), FLOAT,
709.5
       FIXED BIN);
7 10
       DCL ORIGIN ENTRY (FLOAT, FLOAT, FIXED BIN);
711
       DCL (XLAB, YLAB, GLAB, DATLAB) CHAR (20) VARYING:
712
       DCL (STRING) CHAR (3):
713
       CALL ORIGIN (0.0, 3.0, 1);
714
       DO I=1 TO ###:
       CALL ORIGIN (8.5,0.0,1);
715
716
       CALL ORIGIN (1.0,-1.5,6):
717
       GET LIST (IPLOT);
718
       GET LIST (XLAB, YLAB, GLAB);
719
       GET LIST (STRING);
       GET LIST (NPOINTS, ISYM);
720
721
       PLOT1: BEGIN:
722
       DCL (X(NPOINTS), Y(NPOINTS)) FLOAT:
723
       GET LIST (X):
724
       GET LIST (Y);
       GET LIST (DATLAB);
725
726
       IF STRING= LOG THEN DO:
727
       X = LOG10(X);
```

```
728
        Y = LOG10(Y);
729
        END:
        IF STRING= LOG THEN DO;
730
751
        I5=-5:
732
        XYSF=0.5:
733
        END;
734
       ELSE DO:
735
       I5=5:
736
       XYSF=0.0:
737
       END;
738
       CALL GRAPH (NPOINTS, X, Y, ISYM, 7, 15, 15, XYSF, 0.0, XYSF,
739
       0.0,';',';',';',DATLAB);
740
       CALL LETTRS (0.0,5.5,0.2,GLAB,0.0,80);
       CALL LETTRS ((5-(LENGTH(XLAB)/5))/2,-1.0,0.2,XLAB,
741
741.5
       0.0,20);
742
       CALL LETTRS (-1.0, (5-(LENGTH (YLAB) /5)) /2,0.2, YLAB,
742.5
       90.0,20):
743
       END PLOT1:
744
       IF IPLOTS=1 THEN GO TO STOP;
745
       DO J=2 TO IPLOT;
746
       GET LIST (NPOINTS, ISYM);
747
       PLOTS: BEGIN;
       DCL (X(NPOINTS), Y(NPOINTS)) FLOAT;
748
749
       GET LIST (X);
750
       GET LIST (Y):
751
       GET LIST (DATLAB);
752
       IF STRING="LOG" THEN DO:
753
       X = LOG10(X):
754
       Y = LOG10(Y):
755
       END:
756
       CALL GRAPHS (NPOINTS, X, Y, ISYM, 107, DATLAB);
757
       END PLOTS:
758
       END:
759
       END:
760
       STOP: END PLOT:
761
      //GO.SYSIN DD *
8C0
      //GO.FT14F001 DD DSN=&SM,UNIT=SCRTCH,DISP=(NEW,PASS),
      // SPACE=(800, (120,15)), DCB=(RECFM=VS, LRECL=796,
801
802
      // BLKSIZE=800)
      /*
803
804
      //SMPLTTR EXEC PLOT, PLOTTER=INCRMNTL, FORM=W
8C5
806
      11
```

APPENDIX 4: TRSGJO

TRSGJO is an assembly language program which runs on the PLP8/E minicomputer. TRSGJO controls the x-ray pulse generation, data acquisition and format of the paper tape data set of the pulsed XEOL system. The assembly language program is composed of several subroutines. Many of the subroutines are utilities for accepting input from the keyboard or paper tape reader, generating output on the teletype or paper tape punch or performing simple numerical operations. The subroutines which contain interface instructions control the x-ray supply or gated integrator. The program, in compiled form, appears on the following pages.

```
/ TRSGJO
               / OESTREICH 5-20-77
              FIELD 0
        0000
        0000
              *0
        0020
              *20
        7402
                        HLT
00020
        0000
                        0
00021
              CNTR1.
00022
        0000
              CNTR2.
                        0
              ISTORE, 3777
00023
        3777
        0000
                        0
00024
              Ρ,
              PASSES.
00025
        0000
                        0
        0000
              SUM2.
                        0
00026
00027
        0000
              NUMWAV,
        0000
              DELTIM.
                       0
00030
00031
        0000
                        0
              PUN1,
        0000
              RUNCNT,
                        0
00032
00033
        0000
              LUMIN,
                        0
00034
        0000
              DATPOT,
                        0
00035
        0000
              RANGE,
                        0
                        0
00036
        0000
              N,
00037
        0000
              SUM,
                        0
00040
        0000
              DELRAN,
                        0
00041
        0000
              TEMPST.
                        0
        0000
                        0
00042
                        0
0C043
        0000
              CNT1,
              CNT2.
                        0
00044
        0000
        0000
              HIGH.
                        0
00045
                        0
00046
        0000
              LOW,
        0200
              *200
        7300
                                          /CLEAR LINK & LINK
00200
              START,
                        CLA CLL
                                          /RAISE TTY PRINT FLAG
                        TLS
00201
        6046
                                          /INPUT DATE & TIME
                               DATTIM
00202
        4577
                        JMS I
                                          /RESET ROUTINE
                               RESET1
00203
        4576
              RESET.
                        JMS I
                                          /SET WORKING VARIABLES
        4231
                        JMS SET1
00204
              PASS.
                                          /ROTOR ON & ENABLE
                        JMS I
00205
        4575
                               PREP
00206
        1033
                        TAD LUMIN
00207
        7650
                        SNA CLA
                        JMS BCMB2
                                          /XRAYS FAST
00210
        4304
                                          /X-RAYS SLOW
        4254
                        JMS BOMB
00211
                        JMS I
                                SUMDAT
00212
        4574
                                          /SUM SQUARES
00213
        4573
                        JMS I
                                SUMSQR
                       ISZ P
                                          /TEST PASS COUNT
00214
        2024
                       JMP PASS
00215
        5204
```

```
0C216
       4572
                     JMS I DATOUT
0C217
      7200
                     CLA
00220
       1377
                     TAD (MSG15-1
                                     /ANOTHER RUN ?
                     DCA 17
00221
       3017
                     JMS I MESAGE
00222
      4571
                    JMS I NUMGET
00223
       4570
                                     /GET ANSWER
00224
       7640
                    SZA CLA
00225
      5203
                     JMP RESET
                     JMS I
00226
      4567
                           ENDFIL
0C227
       4566
                     JMS I CRLF
00230
       7402
                     HI.T
00231
      0000
             SET1,
                     0
                                     /SET WORKING VARIABLES
00232
       7200
                     CLA
00233
      1023
                     TAD ISTORE
                                    /SET STORAGE POINTER
0C234
      3010
                     DCA 10
00235
      1033
                     TAD LUMIN
                                     /FAST OR SLOW
00236
       7650
                     SNA CLA
                    JMP POINTS
00237 5251
                                    /FAST, GO BOMB
00240 7340
                    CLA CLL CMA
                                    /SLOW, SET OTHERS
00241 1034
                    TAD DATPOT
                                    /DATA POINT COUNTER
      3037
00242
                    DCA SUM
0C243 7340
                    CLA CLL CMA
00244 1010
                    TAD 10
00245
       3010
                    DCA 10
00246 1034
                     TAD DATPOT
                                    /DATA REFERENCE
00247 3026
                     DCA SUM2
00250 5631
                     JMP I SET1
00251 1027 POINTS, TAD NUMWAV
00252 3026
                     DCA SUM2
                     JMP I SET1
00253 5631
00254
     0000
             BOMB,
                     0
                                    /BCMB ROUTINE
00255 6337
                     CSTART
                                    /CONTROLLER STARTS
00256
      1027
                     TAD NUMWAV
                                    /# OF WAVES
00257
      3036
                    DCA N
00260
      6331
                     CREADY
                                    /COMPUTER READY
00261
      6332
                    NOW
                                    ZERO CROSSING OF WAVE
00262
      5261
                    JMP .-1
00263
      6333
             MULTI,
                    XON
                                    /TURN XRAY ON
00264
      7346
                    CLA CLL CMA RTL
0C265
      4565
                    JMS I DEL
                                    /5 USEC * AC DELAY
00266
      6332
                    NOW
                                    /INDICATES X-RAY OFF
                    JMP .-1
00267 5266
      6334
00270
                                    /HOLDS X-RAYS OFF
                    XOFF
00271
      7346
                    CLA CLL CMA RTL
0C272
      4565
                    JMS I DEL
                                    /5 USEC * AC DELAY
00273 2036
                   ISZ N
                                    /ANOTHER WAVE ?
00274
      5263
                    JMP MULTI
                                    /YES, REPEAT PROCESS
00275 6336
                    CWAIT
                                    /NO, RESET NOW PULSE
```

```
/XRAY DISABLE
      6344
                   XDABLE
0C276
                   ROTROF
                                  TURN ROTOR OFF
00277
      6342
                                  /TRANSIENT DELAY
                   TAD DELTIM
00300
     1030
                                  /5 USEC * AC DELAY
                  JMS I DEL
0C301
      4565
                                  /COLLECT DATA
00302 4564
                   JMS I DATA
                   JMP I BOMB
00303 5654
                                  /BCMB ROUTINE FAST
00304 0000 BOMB2,
                                  /CONTROLLER START
                   CSTART
00305 6337
     1027
                   TAD NUMWAV
00306
      3036
                   DCA N
00307
                                  /COMPUTER READY
                   CREADY
00310
      6331
                    NOW
      6332
0C311
                   JMP .-1
00312
     5311
                                  TURN XRAY ON
00313
     6333 MULT,
                   XO N
                   TAD (-1440
00314
      1376
                   JMS I DEL
                                  /5 USEC * AC DELAY
00315
      4565
                                  START INTEGRATOR
      6345
                   STBOX
00316
0C317
      6332
                   NOW
                   JMP .-1
00320
     53 17
                                  /HOLD XRAY OFF
      6334
                   XOFF
00321
                   TAD (-1440
00322 1376
                                  /5 USEC * AC DELAY
                  JMS I DEL
00323 4565
                                  /START A TO D
      6455
                   STATOD
00324
                  CLA CLL CMA RTL
00325
     7346
                                  /5 USEC * AC DELAY
                  JMS I DEL
0C326
      4565
      6354
                                  /GET DATA POINT
                   GETDAT
00327
                                  /RESET INTEGRATOR
                   INBOX
00330
     6346
                   DCA I 10
00331
     3410
00332 6332
                   NOW
                  JMP .-1
CLA CLL CMA RTL
00333
     5332
00.334
      7346
                  JMS I DEL /5 USEC * AC DELAY
00335 4565
                                  /MORE WAVES ?
                   ISZ N
00336
      2036
                   JMP MULT
                                  /YES, BOMB
00337 5313
00340
     6336
                  CWAIT
                                  /NO, RESET
                                  /DISABLE XRAY
                   XDABLE
0C341
     6344
                                  TURN ROTOR OFF
00342 6342
                   ROTROF
      2304
                   ISZ BOMB2
00343
     5704
                  JMP I BOMB2
00344
0C376 6340
00377
      3206
      0400 * 400
                                  MESSAGE ROUTINE
00400 0000 MESAGE, 0
      7300 ENT10,
                   CLA CLL
0C401
                   TAD LIT1
     1241
00402
                   DCA BYTCHT
OC403 3240
```

```
TAD I 17
00404
       1417
                      DCA STOR1
00405
       3246
00406
       1246
                      TAD STOR1
                                        /BYTE SWAP
                      BSW
00407
       7002
                                        /CHECK FOR TERMINATOR
                      AND LIT2
             ENT11.
       0242
00410
                                        /ZERO IN AC ?
                      SZA
00411
       7440
                                        /NO: CONTINUE
                      JMP .+2
00412
       5214
                                        YES: END MESSAGE
                      JMP I MESAGE
00413
       5600
                      TAD LIT3
00414
       1243
       7500
                      SMA
00415
                      JMP .+3
00416
       5221
                      TAD LIT4
00417
       1244
00420
      5222
                      JMP .+2
                      TAD LIT5
00421
       1245
                      DCA STOR2
00422
       3247
                                        /CHECK FOR CRLF
                      TAD STOR2
00423
       1247
                      TAD MDOLAR
00424
       1250
                                        /IS THE CHARACTER A $
                      SZA CLA
00425
       7640
                                        /NO; PRINT IT
00426
       5231
                      JMP .+3
                      JMS I CRLF
                                        /YES: CRLF
00427
       4566
      5233
                      JMP .+3
00430
                      TAD STOR2
00431
       1247
                      JMS I
                              TYPEIT
00432
       4563
                                       GET NEXT CHARACTER
                      ISZ BYTCNT
00433
       2240
                      JMP .+2
       5236
00434
                      JMP ENT10
00435
       5201
                      TAD STOR1
00436
       1246
                      JMP ENT11
00437
       5210
       0000
              BYTCNT.
00440
                      0
                      7776
       7776
0C441
              LIII.
                      0077
00442
       0077
              LIT2,
                      7745
       7745
              LIT3.
0 C 4 4 3
00444
             LIT4,
       0333
                      0333
       0233
                      0233
00445
              LII5,
       0000
              STOR 1.
00446
0C447
       0000
              STOR 2,
                      0
              MDOLAR, -244
00450
       7534
                                        /NO INTERPRETER ROUTINE
00451
       0000
              NUMGET, 0
       7300
                      CLA CLL
00452
                      DCA DIGITS
00453
       3323
                       TAD DIGLOC
0C454
       1324
                      DCA DIGPTR
0C455
       3010
CC456
       3325
                      DCA TEMP
              GETDIG, JMS I READ
       4562
                                        /READ CHARACTER
00457
                      DCA TEMP
00460
       3325
                      TAD TEMP
                                        /CHECK FOR ERASE
       1325
00461
                                        /KEY (SLASH)
                      TAD MSLASH
00462
       1326
                                        /IS CHAR A SLASH ?
       7650
                      SNA CLA
00463
                      JMP ERROR
                                        YES: REPEAT ENTRY
00464
       5311
```

```
00465
                      TAD TEMP
                                       /NO: TEST FOR TERMINAL
        1325
00466
        13 27
                      TAD RETURN
                                       /RETURN CHARACTER
00467
       7650
                      SNA CLA
                                       /IS IT A RETURN ?
00470
       5316
                      JMP CLEAR
                                       /YES; EXIT THIS ROUTINE
                      TAD TEMP
                                       /NO: CHECK FOR
00471
       1325
00472
       1377
                      TAD (-260
                                       /OCTAL INPUT
                                       /IS CHAR < 260 ?
00473
       7510
                      SPA
                                       /YES: GO TO ERROR
00474
       5311
                      JMP ERROR
                                       /NO: SUBTRACT 9 DECIMAL
00475
       1330
                      TAD MNINE
00476
                      SMA SZA CLA
                                       /IS CHAR > 271 ?
       7740
CC477
       5311
                      JMP ERROR
                                       /YES: GO TO ERROR
                      TAD TEMP
00500
       1325
                                       /NO: GET THE CHAR
00501
       3410
                      DCA I DIGPTR
00502
                      ISZ DIGITS
                                       /INCREMENT DIGIT COUNT
       2323
00503
                      CLA CLL
       7300
00504
       1323
                      TAD DIGITS
                                       /CHECK DIGIT COUNT
0C505
       1376
                      TAD (-4
00506
       7740
                      SMA SZA CLA
                                       /DIGITS <= 4 ?
                                       /NO: GO TO ERROR BRANCH
0C507
       5311
                      JMP ERROR
0C510
       5257
                      JMP GETDIG
00511
       4566
                      JMS I CRLF
             ERROR.
                                       /CRLF
00512
       1322
                      TAD MOM
                                       /GET ?
0C513
       7041
                      CIA
00514
       4563
                                       /PRINT THE ?
                      JMS I
                              TYPEIT
00515
       5252
                      JMP NUMGET+1
                                       /DISREGARD BAD ENTRY
0C516
       7300 CLEAR,
                      CLA CLL
CC517
       4331
                      JMS CONVRT
                                       /CONVERT TO OCTAL
00520
       5651
                      JMP I NUMGET
00521
       0000
              MDIGIT, 0
00522
       7501
              MOM,
                      -277
00523
       0000
              DIGITS, 0
       0567
00524
              DIGLOC, 567
00525
       0000
              TEMP.
00526
       7521
              MSLASH, -257
00527
       7555
              RETURN, -223
       7767
00530
              MNINE.
                      -11
       0010
                      DIGPTR=10
                                       /CONVERT ASCII TO OCTAL
00531
       0000
             CONVRT.
                      0
00532
       7300
                      CLA CLL
00533
       1323
                      TAD DIGITS
                                       /SET DIGIT COUNTER
00534
       7041
                      CIA
00535
       3321
                      DCA MDIGIT
00536
       1324
                      TAD DIGLOC
                                       /SET POINTER
00537
       3010
                      DCA DIGPTR
00540
       3325
                      DCA TEMP
                                       /ZERO TEMPORARY STORAGE
                      TAD TEMP
             PACK.
0C541
       1325
                                       /LOAD PARTIAL NUMBER
00542
       7106
                      CLL RTL
                                       /MULTIPLY BY 10
00543
       1325
                      TAD TEMP
OC544
       7004
                      RAL
```

```
00545
        33 25
                      DCA TEMP
 0C546
       1410
                      TAD I DIGPTR
                                       /ADD NEXT STORED DIGIT
 00547
        1377
                      TAD (-260
                                       /SUBTRACT 260
 00550
        1325
                      TAD TEMP
                                       /ADD TO PARTIAL NUMBER
 00551
        3325
                      DCA TEMP
                                       /STORE PARTIAL NUMBER
 00552
        2321
                      ISZ MDIGIT
                                       /ALL DIGITS DONE ?
00553
        5341
                      JMP PACK
                                       /NO; GET ANOTHER
 00554
       1325
                      TAD TEMP
                                       /YES; GET PACKED NUMBER
0C555
        5731
                      JMP I CONVRT
        0570
              *570
00570
        0000
                      0
00571
       0000
                      0
CC572
        0000
                      0
00573
       0000
                      0
0C576
       7774
0C577
       7520
       0600
             * 600
00600
       0000
              SDPR NT.
00601
       7300
                      CLA CLL
       1600
00602
                      TAD I SDPRNT
                                       /PICK UP ADDRESS OF
00603
       3303
                      DCA SDGET
                                       /HIGH ORDER WORD
00604
      6211
                      CDF 10
                      TAD I SDGET
00605
       1703
                                       /GET HIGH ORDER WORD
00606
      7700
                      SMA CLA
                                      /IS IT NEGATIVE ?
00607
      1272
                      TAD SDPLUS
                                      /NO, GENERATE SPACE
00610
       1273
                      TAD SDMNS
                                      /YES, GENERATE MINUS
00611
       1377
                      TAD (260
00612
       4563
                      JMS I
                             TYPEIT
                                      /TYPE IT OUT
00613
       1703
                      TAD I SDGET
                                      /GET HIGH ORDER WORD
00614
       7510
                                      /IS IT POSITIVE ?
                      SPA
00615
       7060
                      CMA CML
                                      /NO, COMPLEMENT IT
00616
       3275
                      DCA SDHIGH
                                      /STORE POSITIVE WORD
00617
       2303
                      ISZ SDGET
                      TAD I SDGET
00620
       1703
                                      /PICK UP LOW ORDER WORD
00621
       6201
                      CDF 00
00622
       7430
                      SZL
                                      /IS LINK SET ?
00623
       7141
                      CMA CLL IAC
                                      /YES, TWO'S COMPLEMENT
00624
       7430
                      SZL
                                      /DID AC OVERFLOW
                      ISZ SDHIGH
00625
       2275
                                      /YES, CORRECT HIGH WORD
00626
       3276
                     DCA SDLOW
                                      /STORE LOW ORDER WORD
00627
       1270
                     TAD SDLOOP
                                      /INITIALIZE COUNTER=7
00630
       3274
                     DCA SDCNT
       1271
00631
                     TAD SDADDR
                                      /INITIALIZE POINTER TO
00632
       3304
                     DCA SDPTR
                                      /TABLE OF POWERS OF TEN
00633
       2200
                     ISZ SDPRNT
                                      /INDEX RETURN LINKAGE
```

```
/PICK UP POWER OF TEN
              SCARND, TAD I SDPTR
       1704
00634
                                        /FOR USE IN SUBSTRACT
                      ISZ SDPTR
       2304
00635
       3277
                      DCA SDHSUB
00636
                      TAD I SDPTR
CC637
       1704
                      ISZ SDPTR
       2304
00640
                      DCA SDLSUB
00641
       3300
                                        /DOUBLE PRECISION
              SDDO,
                      CLL
       7100
00642
                                        /SUBTRACTION
                      TAD SDLSUB
00643
       1300
                      TAD SDLOW
       1276
00644
                       DCA SDTEML
00645
       3302
                      RAL
00646
       7004
                      TAD SDHSUB
00647
       1277
                      TAD SDHIGH
00650
       1275
                                        /DID IT UNDERFLOW ?
       7510
                      SPA
00651
                                        /NO. COUNT IS DONE
                      JMP SDOUT
       5260
00652
                                        /YES, COUNT NOT DONE
                      ISZ SDBOX
       2301
00653
                                        /DEPOSIT HIGH ORDER
                      DCA SDHIGH
00654
       3275
                                        /PORTION RESTORE LOW
00655
       1302
                      TAD SDTEML
                                        /ORDER PORTION
                      DCA SDLOW
00656
       3276
                                        /GO BACK AND SUBTRACT
       5242
                      JMP SDDO
00657
              SDOUT,
       7200
                      CLA
00660
                                        /PICK UP DIGIT
                      TAD SDBOX
       1301
00661
       1377
                      TAD (260
00662
                                        /TYPE IT OUT
                      JMS I
                              TYPEIT
00663
       4563
                                        /INITIALIZE DIGIT TO 0
00664
       3301
                      DCA SDBOX
                                        /HAVE WE TYPED 7 DIGITS
       2274
                      ISZ SDCNT
00665
                                        /NO. DETERMINE NEXT
                      JMP SDARND
00666
       5234
                                        /YES, END ROUTINE
                      JMP I SDPRNT
       5600
00667
                                        /COUNT OF 7 DIGITS
              SDLOOP, -7
00670
       7771
                                        /ADDRESS OF POWERS
              SDADDR, SDCONL
       0705
00671
                                        / SPACE GENERATOR
       7763
              SDPLUS, -15
00672
                                        / MINUS GENERATOR
                      -3
       7775
              SDMNS.
00673
                                        /STORAGE LOCATIONS
                      0
       0000
              SDCNT,
00674
00675
       0000
              SDHIGH.
                      0
       0000
              SDLOW.
                       0
00676
       0000
              SDHS UB.
                      0
0C677
                       0
       0000
              SDLSUB,
00700
00701
       0000
              SDBO X.
                       0
              SDTEML,
                       0
00702
       0000
                       0
00703
       0000
              SDGET,
                       0
              SDPTR.
00704
       0000
                                        /TABLE OF POWERS OF TEN
              SDCO NL,
00705
                      7413
       7413
                                        /-1,000,000
                       6700
       6700
00706
                                        /-100,000
                       7747
00707
       7747
                       4540
CC710
       4540
                                        /-10,000
       7775
                       7775
00711
                       4360
00712
       4360
                                        /-1,000
                       7777
       7777
00713
                       6030
00714
       6030
                                        /-100
                      7777
00715
       7777
```

```
00716
       7634
                       7634
                       7777
                                        /-10
00717
       7777
       7766
                       7766
CC720
                                        1-1
00721
       7777
                       7777
                       7777
0C722
       7777
00723
       0000
              SSPRNT.
                       0
                       CLL
CC724
       7100
                                        /IS IT POSITIVE ?
00725
       7510
                       SPA
                                        /NO, SET LINK
                       CML CMA IAC
00726
       7061
                                        /STORE NUMBER
                       DCA SSVAL
0C727
       3370
                                        /SET LOCATION TO ZERO
                       DCA SSBOX
00730
       3366
                                        /INITIALIZE COUNTER=4
                       TAD SSCNTR
00731
       1365
                       DCA SSCNT
00732
       3367
                                        /INITIALIZE INSTRUCTION
                       TAD SSADDR
00733
       1362
                                        /TC GET FIRST 10
                       DCA SSXYZ+1
00734
       3343
                                        /GET CODE TO TYPE +
                       TAD SSPLUS
00735
       1363
                                        /IS NUMBER NEGATIVE ?
00736
       7430
                       SZL
                                        YES, CHANGE CODE TO -
                       TAD SSMNS
00737
       1364
                       TAD (260
CC740
       1377
                       JMS I TYPEIT
                                        /TYPE IT OUT
00741
       4563
                                        /PICK UP NUMBER
                       TAD SSVAL
00742
       1370
              SSXYZ,
                                        /SUBSTRACT POWER OF TEN
                      TAD SSCON
00743
       1371
                                        /IS RESULT NEGATIVE ?
                       SPA
00744
       7510
                                        /YES, INDEXING FINISHED
00745
       5351
                       JMP .+4
                                        /NO, INDEX DIGIT LOCA.
                       ISZ SSBOX
00746
       2366
                                        /STORE REMAINDER SSVAL
                       DCA SSVAL
00747
       3370
                                        /CONTINUE SUBSTRACTING
00750
                       JMP SSXYZ
       5342
00751
       7200
                       CLA
                                        /GET THE DIGIT NUMBER
                       TAD SSBOX
00752
       1366
00753
                       TAD (260
       1377
                       JMS I
                                        /TYPE IT OUT
00754
       4563
                              TYPEIT
                                        /DIGIT COUNTER=0
00755
       3366
                       DCA SSBOX
                                        /GET POWER OF TEN
                       ISZ SSXYZ+1
00756
       2343
                                        /TYPED FOUR DIGITS
                       ISZ SSCNT
00757
       2367
                                        /NC, CONTINUE
                       JMP SSXYZ
00760
       5342
                                        /YES, RETURN
                       JMP I SSPRNT
00761
       5723
                                        /TO GET FIRST POWER
              SSADDR, TAD SSCON
00762
       1371
                                        / SPACE GENERATOR
                       -20
00763
       7760
              SSPLUS.
                                        / MINUS GENERATOR
              SSMNS,
                       15
       0015
0C764
                                        /COUNT OF 4 DIGITS
                      -4
       7774
              SSCNTR.
00765
                                        /STORAGE REGISTERS
                       0
              SSBOX.
00766
       0000
00767
       0000
              SSCNT.
                       0
              SS VAL,
                       0
00770
       0000
                                        /-1000
                       6030
00771
       6030
              SSCON,
                                        /-100
                       7634
00772
       7634
                                        /- 10
                       7766
00773
       7766
                                        /-1
CC774
       7777
                       7777
       0260
```

00777

* 1000 /PUNCH TRAILER ENDFIL, O CLA DCA PUN1 TAD (204 JMS TYPEIT TAD (-36 DCA CNTR1 TAD (377 0 1007 JMS TYPEIT ISZ CNTR1 JMP .-3 TAD (-372 DCA CNTR1 JMS TYPEIT ISZ CNTR1 JMP .-2 JMP I ENDFIL /DEL ROUTINE DEL. DCA CNTR1 NOP ISZ CNTR1 JMP .-2 JMP I DEL /PUNCH LEADER LEADER, O TAD (-372 DCA CNTR 1 0 10 3 1 JMS TYPEIT ISZ CNTR1 JMP .-2 TAD (-36 DCA CNTR1 TAD (377 JMS TYPEIT ISZ CNTR1 JMP .-3 JMP I LEADER /PUNCH TWO SPACES SPACE, CLA TAD (240 JMS TYPEIT TAD (240 0 10 50 JMS TYPEIT JMP I SPACE 0 10 52

```
/PUNCH END RECORD CHAR.
01053
       0000
             ENDREC, 0
01054
       7200
                     CLA
                     TAD (223
      1372
0 1055
                     JMS TYPEIT
01056
      4264
                     TAD (377
      1375
0 1057
                     JMS TYPEIT
01060
      4264
                     TAD (377
01061
      1375
                     JMS TYPEIT
       4264
01062
                     JMP I ENDREC
01063
       5653
                                     /TTY PRINT ROUTINE
             TYPEIT, 0
01064
       0000
01065
       6041
                     TSF
                     JMP .-1
      5265
0 1066
                     TLS
01067
      6046
                     CIA CLL
       7300
01070
                     JMP I TYPEIT
01071
       5664
                                      /CRLF ROUTINE
       0000 CRLF.
01072
                     CLA CLL
01073
      7300
                     TAD (215
       1371
01074
                     JMS TYPEIT
01075
       4264
                     TAD (212
      1370
01076
                     JMS TYPEIT
01077
       4264
                     JMP I CRLF
01100
       5672
                                      /KEYBOARD READ ROUTINE
                     0
01101
      0000
             READ.
01102
       6031
                     KSF
                     JMP .-1
01103
       5302
                     CLA CLL
01104
      7300
                     KRB
01105
      6036
                     TLS
01106
       6046
                     JMP I READ
01107
       5701
01170
       0212
       0215
01171
      0223
01172
01173
      0240
       7406
01174
01175
       0377
01176
       7742
01177
       0204
            *1200
       1200
                                      /DOUBLE PRECISION STORE
01200
       0000
             DST.
                     0
                                      /SAVE AC
0 1 2 0 1
       3222
                     DCA ACC
                                      /SAVE DATA FIELD
01202
       6214
                     RDF
01203
      1220
                     TAD KCDF
                     DCA CHG
                                      /GENERATE CDF INSTRUCT.
01204 3211
                     CDF 00
01205 6201
```

01212 01213 01214 01215 01216 01217 01220	2200 0000 1222 3621 2221 7701 3621	CHG, KCDF, ARG, ACC,	TAD I DST DCA ARG ISZ DST O TAD ACC DCA I ARG ISZ ARG ACL DCA I ARG JMP I DST CDF O O	/GET STORAGE ADDRESS /SET RETURN ADDRESS /CHANGE DATA FIELD BACK /RECOVER AC /STORE HIGH ORDER WORD /LOAD AC FROM MQ /STORE LOW ORDER WORD
0 1225	7100 7040 7521 7041 7521 7430 7001	DCM,	O CLL CMA SWP CIA SWP SZL IAC JMP I DCM	/DOUBLE PRECISION /COMPLEMENT /SET AC TO 7777 /NEGATE MQ CONTENTS /CHECK FOR OVERFLOW
01236 01237 01240 01241 01242 01243 01244 01245 01246 01247	3222 6214 1220 3245 6201 1634 3221 2234 0000 1621	DAD, CHANG,	O DCA ACC RDF TAD KCDF DCA CHANG CDF OO TAD I DAD DCA ARG ISZ DAD O TAD I ARG DCA HIGHT ISZ ARG CLL	/DCUBLE PRECISION ADD /SAVE AC /SAVE DATA FIELD /GET ADDRESS OF /STORED VALUES /SET RETURN ADDRESS /CHANGE DATA FIELD BACK /GET HIGH ORDER STORED /VALUE AND SAVE
0 1252 0 1253 0 1254 0 1255 0 1256 0 1257 0 1260	7521 1621 7521 7430 7101 1222 1262 5634 0000 0000 7200	HIGHT,	SWP TAD I ARG SWP SZL IAC CLL TAD ACC TAD HIGHT JMP I DAD O	/LOAD MQ INTO AC /GET LOW ORDER STORED /LOW ORDER SUM IN MQ /WAS THERE A CARRY ? /YES, INCREMENT AC /NO, ADD HIGH ORDER /RETURN /SUM DATA

```
1023
                     TAD ISTORE
                                     /FIND DATA
01265
                     DCA 10
      3010
0 1266
                                     /SET MSH POINTER
                     DCA MSHPNT
01267
      3306
                     DCA MSHPNT+2
01270
       3310
01271
                     TAD SUM2
      1026
                     DCA CNTR1
                                     /DATA COUNTER
01272
      3021
      7621 SUMLUP, CAM
01273
                                     GET FIRST VALUE
                     TAD I 10
01274
       14 10
                                     /IS IT NEGATIVE ?
01275
      7500
                     SMA
                                     /NO, ADD IT
       5303
                     JMP ADD1
01276
                                     /YES. MAKE IT POSITIVE
                     CIA
      7041
0 1277
                                     /PUT IN MQ
                     SWP
      7521
01300
                                     /MAKE IT NEGATIVE
                     JMS DCM
01301
      4223
01302
      7410
                     SKP
                                     /PUT IN MQ
      7521
                     SWP
01303
             ADD1.
      6211
                     CDF 10
01304
                                     /DCUBLE PRECISION ADD
                     JMS DAD
01305 4234
01306
      0000 MSHPNT, 0
                                     /DCUBLE PRECISION STOPE
      4200
                     JMS DST
01307
01310
      OOOO DUMMY,
                     0
                     CDF 00
      6201
01311
                                     /SET NEW ADDRESS
                     ISZ MSHPNT
01312
      2306
                     ISZ MSHPNT
01313
       2306
                     ISZ MSHPNT+2
01314
       2310
01315 2310
                    ISZ MSHPNT+2
                                     /ALL DATA SUMMED ?
                    ISZ CNTR1
      2021
01316
      5273
                                     /NO, NEXT VALUE
                    JMP SUMLUP
01317
                                     /YES, DELAY
                    CLA CLL
01320
      7300
                                     /DELAY TEST
                    TAD LUMIN
01321
      1033
                   SNA CLA
JMP STDEL
TAD RANGE
                                     /FAST OR SLOW ?
      7650
5347
01322
                                     /FAST, DELAY
0 13 23
                                     /SLOW, TEST
      10 35
01324
                    CIA
01325 7041
                    IAC
01326
       7001
                                     /10 MSEC RANGE ?
                    SNA
      7450
01327
                                     /YES, TEST TWO
                    JMP TESTA
      5342
0 13 30
                                     /NO, 100 MSEC RANGE ?
                    IAC
      7001
01331
                    SZA CLA
       7640
01332
                    JMP I SUMDAT
                                     /NC, FORGET DELAY
0 1333
       5663
                                     /YES, TEST TWO
                    TAD DATPOT
      1034
01334
                    CIA
01335
      7041
                    AND (7400
      0377
01336
                     SZA CLA
      7640
01337
                     JMP I SUMDAT
01340
      5663
                     JMP STDEL
01341
       5347
                     TAD DATPOT
       1034
             TESTA,
0 1342
                     CIA
       7041
01343
                     AND (4000
       0376
01344
                     SZA CLA
01345
       7640
                    JMP I SUMDAT
01346
       5663
```

```
/STANDARD DELAY
                       TAD (-3720
        1375
              STDEL,
01347
                       DCA CNTR2
        3022
01350
              DELMIN, TAD (-3720
01351
        1375
                                       /5 USEC * AC DELAY
                       JMS I
                             DEL
        4565
01352
                       ISZ CNTR2
        2022
01353
                       JMP DELMIN
01354
        5351
                                       /END
                       JMP I SUMDAT
        5663
01355
01375
        4060
01376
        4000
        7400
01377
        1400
              *1400
                                       /PUNCH GENERAL DATA
              DATOUT,
        0000
                       0
01400
                       CLA
01401
        7200
                       TAD PUN1
        1031
01402
                       SNA CLA
01403
        7650
                                       /PUNCH LEADER
                             LEADER
01404
        4561
                       JMS I
        2031
                       ISZ PUN1
01405
                       JMS I
                              CRLF
        4566
01406
                       JMS I
                              ENDREC
        4560
01407
                       TAD (-6
01410
        1377
                       DCA CNTR1
        3021
01411
                       TAD (PNTDAT
01412
        1376
                       DCA 13
        3013
01413
                       TAD I 13
        1413
01414
                       JMS I TYPEIT
01415
        4563
                       ISZ CNTR1
01416
        2021
                       JMP .-3
        5214
01417
                       JMS I SPACE
01420
        4557
                       TAD I 13
01421
        1413
                       TAD I 13
        1413
01422
                       CLA
01423
        7200
                       TAD (-4
        1375
01424
                       DCA CNTR1
01425
        3021
                       TAD I 13
        1413
01426
                       JMS I
        4563
                              TYPEIT
01427
                       ISZ CNTR1
01430
        2021
        5226
                       JMP .-3
01431
                       JMS I
                              SPACE
        4557
01432
                       TAD RUNCHT
        1032
01433
                       JMS I
                              SSPRNT
01434
        4556
                       JMS I
                              SPACE
01435
        4557
        1027
                       TAD NUMWAV
01436
                       CIA
01437
        7041
                       JMS I
                              SSPRNT
        4556
01440
                       JMS I
                              SPACE
        4557
01441
                       TAD PASSES
01442
        1025
01443
        7041
                       CIA
```

```
01444
        4556
                        JMS I
                                SSPRNT
        4557
                        JMS I
                                SPACE
01445
                        TAD SUM2
01446
        1026
01447
        7041
                        CIA
        4556
                        JMS I
                                SSPRNT
01450
                        JMS I
                                SPACE
        4557
01451
01452
        1033
                        TAD LUMIN
                        JMS I
                                SSPRNT
        4556
01453
                        JMS I
                                SPACE
01454
        4557
                        TAD LUMIN
01455
        1033
                        SNA CLA
        7650
01456
                        JMP CONTIN
0 1457
        5267
                        TAD DELTIM
01460
        1030
0 1461
        7041
                        CIA
        4556
                        JMS I
                                SSPRNT
01462
                                SPACE
01463
        4557
                        JMS I
                        TAD RANGE
01464
        1035
                                SSPRNT
01465
        4556
                        JMS I
                        JMS I
                                SPACE
01466
        4557
01467
        4566
               CONTIN.
                       JMS I
                                CRLF
                        JMS I
                                ENDREC
        4560
01470
                        JMS I
                                PUNCH
01471
        4555
                        JMS I
                                PUNSQR
        4554
01472
                        JMP I DATOUT
                                          /END
01473
        5600
                                          /SUMMED DATA OUTPUT
01474
        0000
               PUNCH.
                        0
                        CLA
C1475
        7200
                        DCA ADR
01476
        3305
01477
        1026
                        TAD SUM2
                        DCA CNTR1
0 1500
        30 21
              LOP,
        1374
                        TAD (-7
01501
                        DCA CNTR2
01502
        3022
        7200
                        CLA
01503
               INLOP,
                        JMS I
                                SDPRNT
01504
        4553
01505
        0000
               ADR.
                        JMS I
                                SPACE
01506
        4557
                        ISZ ADR
        2305
01507
                        ISZ ADR
0 15 10
        2305
                        ISZ CNTR1
01511
        2021
                        JMP +2
01512
        5314
        5321
                        JMP ENDTAP
01513
                        ISZ CNTR2
01514
        20 22
        5303
                        JMP INLOP
01515
                        JMS I
                               CRLF
01516
        4566
01517
        4560
                        JMS I
                                ENDREC
0 15 20
        5301
                        JMP LOP
               ENDTAP, JMS I
                               CRLF
        4566
01521
        4560
                        JMS I
                                ENDREC
01522
                                          /OVERLOAD OUTPUT
                        TAD (5777
        1373
01523
0 15 24
        30 10
                        DCA 10
```

```
DCA ADR
0 15 25
       3305
                        ISZ ADR
01526
        2305
                        TAD SUM2
01527
        1026
01530
                        DCA CNTR1
        3021
                        TAD (-5
0 153 1
        1372
                        DCA CNTR2
01532
       3022
                        CLA
0 153.3
       7200
              LOPIN,
                        TAD I 10
01534
        1410
01535
       7450
                        SNA
                        JMP POL
01536
        5352
                        JMS I
                                SSPRNT
        4556
0 15 37
                        JMS I
                                SPACE
01540
        4557
01541
        1305
                        TAD ADR
                        JMS I
                                SSPRNT
01542
        4556
                       JMS I
                                SPACE
01543
        4557
                        ISZ CNTR2
01544
        2022
0 1545
        5352
                        JMP POL
                        JMS I
                               CRLF
01546
        4566
                                ENDREC
01547
        4560
                        JMS I
                        TAD (-5
01550
        1372
                        DCA CNTR2
01551
       30 22
              POL,
                        ISZ ADR
C 1552
        2305
                        ISZ CNTR1
0 1553
        2021
0 1554
        5333
                        JMP LOPIN
                        CLA
0 1555
        7200
                        JMS I
                                SSPRNT
01556
        4556
                        JMS I
                                SPACE
01557
        4557
                        JMS I
                                SSPRNT
01560
        4556
                       JMS I
                                SPACE
01561
        4557
        4566
                       JMS I
                                CRLF
01562
                       JMS I
        4560
                                ENDREC
01563
                       JMP I PUNCH
01564
        5674
01572
       7773
01573
        5777
01574
        7771
        7774
0 1575
01576
        1711
0 1577
        7772
        1600
               *1600
                                          /RESET FOR RUN
01600
        0000
               RESET1.
                       0
                                          /SET RUN COUNTER
        2032
                        ISZ RUNCNT
0 1601
01602
        7200
                        CLA
                        TAD (MSG03-1
                                          /REPEAT RUN
        1377
0 1603
                        DCA 17
01604
       3017
                        JMS I
                                MESAGE
        4571
01605
                                          /GET ANSWER
                       JMS I
                                NUMGET
01606
       4570
                                          /REPEAT ?
                       SNA CLA
0 1607
       7650
```

```
01610 4552
                                  /NO, PRINT MESSAGES
                    JMS I MESSY
01611
                    TAD PASSES
      1025
                                   /YES, RESET VARIABLES
01612 3024
                    DCA P
01613 3021
                   DCA CNTR1
                                   /ZERO FIELD 1
01614 6211
                    CDF 10
01615 3421 ZLOOP, DCA I CNTR1
01616 2021
                    ISZ CNTR1
01617
       5215
                    JMP ZLOOP
01620 6201
                    CDF 00
01621
      1376
                   TAD (3777
                                  ZERO OVERLOAD
0 16 22 30 10
                   DCA 10
0 1623 1375
                   TAD (-3000
01624
       3021
                   DCA CNTR1
0 1625 3410
                   DCA I 10
01626 2021
                   ISZ CNTR1
01627 5225
                  JMP .-2
01630 5600
                   JMP I RESET1
01631 0000 PREP,
                    0
                                   /ROTOR ON & ENABLE
01632 6341
                    ROTRON
                                  TURN ROTOR ON
01633 7200
                    CLA
0 1634
      1374
                    TAD (-764
                                  /DELAY 5 SEC
01635
      3022
                    DCA CNTR2
01636
      1373 RLOOP, TAD (-3720
01637 4565
                   JMS I DEL
                                  /5 USECD * AC DELAY
01640 2022
                    ISZ CNTR2
01641 5236
                    JMP RLOOP
0 1642 6343
                   XABLE
                                  /ENABLE X-RAYS
01643 1372
                    TAD (-6
                                   /DELAY 60 MSEC
0 1644 3022 DCA CNTR2
0 1645 1373 XLOOP, TAD (-3720
01646 4565
                   JMS I DEL
                                  /5 USEC * AC DELAY
01647
      2022
                    ISZ CNTR2
0 1650 5245
                   JMP XLOOP
                                   /INITIALIZE A TO D
01651 6455
                   INATOD
0 1652 6346
                                   /INITIALIZE INTEGRATOR
                   INBOX
01653 5631
                   JMP I PREP
                                   /END
01654 0000 DATTIM, 0
                                   /DATE & TIME ROUTINE
0 1655 1371
                   TAD (MSG01-1
                   DCA 17
01656 3017
01657 4571
                   JMS I MESAGE /PRINT MESSAGE
01660 7200
                   CLA
01661 1372
                   TAD (-6
01662 3021
                   DCA CNTP1
                                 /SET DIGIT COUNTER
0 1663 1310
                   TAD DATPNT
                                  /GET STORAGE LOCATION
01664 3311
                   DCA PNTDAT
01665 4562 DNEXT, JMS I READ
                                 /GET DIGIT
01666 3711
                   DCA I PNTDAT
                                  /STORE DIGIT
0 1667 2311
                   ISZ PNTDAT
                                  /RESET STORAGE LOCATION
```

```
0 1670
       2021
                      ISZ CNTR1
                                       /MORE DIGITS ?
01671
       5265
                      JMP DNEXT
                                       /YES, GET DIGIT
01672
                      TAD (MSG02-1
        1370
                                       /NO, GET TIME
                      DCA 17
0 1673
        3017
0 1674
       4571
                      JMS I MESAGE
                                       /PRINT MESSAGE
0 1675
        7200
                      CLA
01676
       1367
                      TAD (-4
0 1677
       3021
                      DCA CNTR1
                                       /SET DIGIT COUNTER
01700
                      TAD TIMPNT
       1320
                                       /GET STORAGE LOCATION
0 170 1
                      DCA PNTTIM
       3321
       4562
01702
              TNEXT,
                      JMS I READ
                                       /GET DIGIT
01703
       3721
                      DCA I PNTTIM
                                       /STORE DIGIT
01704
       2321
                      ISZ PNTTIM
                                       /RESET
01705
       2021
                      ISZ CNTR1
                                       /MORE DIGITS ?
01706
       5302
                      JMP TNEXT
                                       /YES, GET DIGIT
01707
       5654
                      JMP I DATTIM
                                      /NO, END ROUTINE
01710
       1712 DATPNT, DATPNT+2
01711
       0000 PNTDAT, 0
01712
       0000
                      0
                                      /STORAGE OF DATE
01713
       0000
                      0
01714
       0000
                      0
0 17 15
       0000
                      0
C1716
       0000
                      0
0 17 17
       0000
                      0
01720
       1722
             TIMPNT, TIMPNT+2
01721
       0000
             PNTTIM, O
01722
       0000
                      0
                                      /STORAGE OF TIME
01723
                      0
       0000
0 1724
      0000
                      0
01725 0000
                      0
       7774
01767
0 1770
       3006
01771
       2777
01772
       7772
01773
       4060
01774
       7014
C 1775
       5000
01776
       3777
01777
       3020
       2000
             *2000
02000
      0000
             MESSY.
                                      /INFORMATION INPUT
02001
       1377
                     TAD (MSG04-1
                                      /GET # OF WAVES
                     DCA 17
02002
       3017
02003
      4571
                     JMS I
                             MESAGE
02004
       4570
                     JMS I
                             NUMGET
                                      /GET ANSWER
02005
       7041
                     CIA
02006
       3027
                     DCA NUMWAV
```

```
/# OF PASSES
                       TAD (MSG05-1
0.2007
       1376
                       DCA 17
02010
       3017
02011
       4571
                       JMS I
                              MESAGE
                                        /GET ANSWER
                       JMS I
       4570
                              NUMGET
02012
                       CIA
02013
       7041
02014
       3025
                       DCA PASSES
                                        /FAST OR SLOW ?
                       TAD (MSG06-1
02015
       1375
                       DCA 17
02016
       3017
                       JMS I
                              MESAGE
02017
       4571
                      JMS I
                                        /GET ANSWER
                              NUMGET
02020
       4570
02021
       3033
                       DCA LUMIN
                       TAD LUMIN
02022
       1033
                       SNA CLA
       7650
02023
                       JMP I MESSY
02024
       5600
                                        /TRANSIENT DECAY
                       TAD (MSG07-1
02025
       1374
                       DCA 17
       3017
02026
                       JMS I
                              MESAGE
02027
       4571
                       JMS I
                              NUMGET
                                        /GET ANSWER
02030
       4570
                       CIA
02031
       7041
                       DCA DELTIM
02032
       3030
                                        /# DATA POINTS
02033
       1373
                       TAD (MSG08-1
                       DCA 17
02034
       30 17
       4571
                      JMS I
                              MESAGE
02035
                      JMS I
                              NUMGET
                                        /GET ANSWER
       4570
02036
                       CIA
02037
       7041
                       DCA DATPOT
02040
       3034
                                        /BANGE CODE
                       TAD (MSG09-1
       1372
02041
                       DCA 17
02042
       3017
       4571
                       JMS I
                              MESAGE
02043
                                        /GET ANSWER
                       JMS I
                              NUMGET
02044
       4570
                       DCA RANGE
02045
       3035
                       TAD RANGE
02046
       1035
                       TAD PTR
02047
       1255
                       DCA TEMPER
02050
       3254
                       TAD I TEMPER
02051
       1654
                       DCA DELRAN
02052
       3040
                       JMP I MESSY
       5600
02053
02054
       0000
              TEMPER.
                       PTR
       2055
02055
              PTR.
02056
       2217
                       DEL 1
                       DEL2
02057
       2223
       2233
                       DEL 3
02060
02172
       3162
       3152
02173
02174
       3116
       3070
02175
       3056
02176
02177
       3041
```

```
2200 *2200
                                       /DATA ROUTINE
02200
       0000 DATA,
                                       /START A TO D
                      STATOD
02201
       6455
                      CLA CLL CMA RTL
02202
       7346
                                       /5 USEC * AC DELAY
                      JMS I DEL
02203
       4565
                                       /GET DATA POINT
02204
                      GETDAT
       6354
                                       /INITIAL INTEGRATOR
02205
       6346
                      INBOX
                      DCA I 10
                                       /STORE DATA
02206
       3410
                                       /MORE DATA ?
                      ISZ SUM
02207
       2037
                                       /YES, GET IT
                      JMP .+2
02210
       5212
                      JMP I DATA
                                       /NO, STOP
02211
       5600
                      TAD (-276
02212
       1377
                      JMS I DEL
                                       /5 USEC * AC DELAY
02213
       4565
                                       /START INTEGRATOR
                      STBOX
02214
       6345
                                       /DELAY RANGE VALUE
       4440
                      JMS I DELRAN
02215
                      JMP DATA+1
02216
       5201
                                       /10 MSEC DELAY
       0000
             DEL1.
                      0
02217
                      TAD (-3405
02220
       1376
                      JMS I DEL
02221
       4565
                      JMP I DEL1
       56 17
02222
                                       /100 MSEC DELAY
02223
       0000
             DEL2.
                      0
                      TAD (-5
02224
       1375
                      DCA CNTR2
       3022
02225
                      TAD (213
02226
       1374
                      JMS I DEL
02227
       4565
                      ISZ CNTR2
02230
       2022
                      JMP .-3
02231
       5226
                      JMP I DEL2
02232
       5623
                                       /1 SEC DELAY
                      0
02233
       0000
              DEL3,
02234
       1373
                      TAD (-62
       3022
                      DCA CNTR2
02235
                      TAD (147
02236
       1372
                      JMS I DEL
02237
       4565
                      NOP
02240
       7000
                      ISZ CNTR2
02241
       2022
                      JMP .-4
02242
       5236
                      JMP I DEL3
02243
       5633
             UDPRNT, 0
02244
       0000
                      CLA CLL
02245
       7300
                                       /PICK UP ADDRESS OF
       1644
                      TAD I UDPRNT
02246
                                       /HIGH ORDER WORD
02247
       3331
                      DCA UDGET
                      CDF 10
       6211
02250
                      TAD I UDGET
                                       /PICK UP BOTH WORDS FOR
       1731
02251
                                       /USE IN SUBROUTINE
                      DCA UDHIGH
02252
       3323
02253
       2331
                     ISZ UDGET
```

```
TAD I UDGET
 02254
        1731
                       DCA UDLOW
 02255
        3324
                       CDF 00
        6201
 02256
                                         /INITIALIZE COUNTER
                        TAD UDLOOP
 02257
        1320
                        DCA UDCNT
        3322
 02260
                                         /INITIALIZE TO TABLE OF
                        TAD UDADDR
        1321
 02261
                                         /POWERS OF TEN
                        DCA UDPTR
 02262
        3332
                                         /SET RETURN ADDRESS
. 02263
        2244
                        ISZ UDPRNT
                                         /PICK UP FIRST POWER
               UDARND, TAD I UDPTR
        1732
 02264
                                         /FOR USE IN SUBTRACTION
                        ISZ UDPTR
 02265
        2332
                        DCA UDHSUB
        3325
 02266
                        TAD I UDPTR
 02267
        1732
                        ISZ UDPTR
 02270
        2332
                        DCA UDLSUB
        3326
 02271
                                         /DOUBLE PRECISION SUB
                        CLL
        7100
               UDDO.
 02272
                        TAD UDLSUB
 02273
        1326
                        TAD UDLOW
 02274
        1324
 02275
        3330
                        DCA UDTEML
                        RAL
 02276
        7004
                        TAD UDHSUB
 02277
        1325
                        TAD UDHIGH
 02300
        1323
                                         /DID IT OVERFLOW ?
                        SNL
 02301
        7420
                                         /NO. COUNT IS DONE
                       JMP UDOUT
 02302
        5310
                                         /YES, CONTINUE
                       ISZ UDBOX
 02303
        2327
                                         /SAVE REMAINDER
                       DCA UDHIGH
 02304
        3323
                       TAD UDTEML
        1330
 02305
                        DCA UDLOW
 02306
        3324
        5272
                        JMP UDDO
 02307
                        CLA
 02310
        7200
               UDOUT.
                                         /GET DIGIT
                        TAD UDBOX
 02311
        1327
                        TAD (260
 02312
        1371
                                         /TYPE IT
                               TYPEIT
        4563
                        JMS I
 02313
 02314
        3327
                        DCA UDBOX
                                         /MORE DIGITS ?
                        ISZ UDCNT
        2322
 02315
                                         /YES, GET NEXT
                       JMP UDARND
        5264
 02316
                        JMP I UDPRNT
                                         /NC, DONE
        5644
 02317
               UDLOOP, -10
 02320
        7770
               UDADDR, UDCONL
 02321
        2333
        0000
               UDCNT.
 02322
 02323
        0000
               UDHIGH.
                        0
        0000
               UDLOW.
 02324
 02325
        0000
               UDHSUB, 0
 02326
        0000
               UDLSUB, 0
                        0
 02327
        0000
               UDBOX.
        0000
               UDTEML.
 02330
        0000
               UDGET,
                        0
 02331
        0000
               UDPTR.
 02332
                                         /POWERS OF TEN
               UDCONL, 3166
 02333
        3166
                                         /-10,000,000
        4600
                        4600
 02334
                        7413
                                         /-1,000,000
        7413
 02335
```

```
6700
02336
       6700
                                        /-100,000
                      7747
02337
       7747
                      4540
       4540
02340
                                        /-10,000
                      7775
       7775
02341
                      4360
02342
       4360
                                        /-1000
       7777
                      7777
02343
                      6030
02344
       6030
                                        /-100
                      7777
       7777
02345
       7634
                      7634
02346
                      7777
                                        /-10
02347
       7777
02350
       7766
                      7766
                      7777
                                        1-1
       7777
02351
                      7777
       7777
02352
02371
       0260
02372
       0147
02373
       7716
02374
       0213
       7773
02375
02376
       4373
02377
       7502
       2400
              *2400
                                        /SQUARE ROUTINE
                      0
02400
       0000
              SOR.
                                        /GET DATA ADDRESS
                      TAD I SQR
02401
       1600
       3273
                      DCA ARGU
02402
                                        /SET RETURN ADDRESS
                      ISZ SQR
02403
       2200
                                        /GET DATA POINT
                      TAD I ARGU
       1673
02404
                                        /MAKE IT POSITIVE
                      CIA
02405
       7041
                                        /STORE TEMPORALLY
02406
       3274
                      DCA STORE
                      TAD STORE
       1274
02407
                      DCA TEST
                                        /SET TEST VALUE
       3275
02410
                      IAC
02411
       7001
                                       /SET MASK TO ONE
                      DCA MASK
02412
       3276
                                        /SET BIT COUNTER
02413
       1377
                      TAD (-14
                      DCA CNT2
02414
       3044
                      DCA HIGH
       3045
02415
                      DCA LOW
       3046
02416
              TESTBT, TAD TEST
02417
       1275
                                        /CHECK FOR BIT TRUE
       0276
                      AND MASK
02420
       7740
                       SZA CLA CLL
                                        /TRUE ?
02421
                      JMP ADD
                                        /YES, ADD PARTIAL PROD.
       5235
02422
                                        /RESET MASK
              RETUR,
                      TAD MASK
       1276
02423
                      RAL CLL
02424
       7104
02425
       3276
                      DCA MASK
                                        /MORE BITS ?
                      ISZ CNT2
02426
       2044
                      JMP TESTBT
                                        /YES, TEST NEXT
       5217
02427
                                        /NC, LOAD RESULT IN
                      TAD LOW
02430
       1046
                                        /MQ AND AC
                      SWP
02431
       7521
```

```
CLA
02432
       7200
                      TAD HIGH
02433
       1045
                      JMP I SQR
                                        /END
02434
       5600
                      TAD CNT2
                                        /DETERMINE WHICH BIT
              ADD.
02435
       1044
                                       /WAS BEING TESTED
                      TAD (14
02436
       1376
                      CMA CLL
02437
       7140
                      DCA CNT1
02440
       3043
                      TAD STORE
02441
       1274
                      DCA TEMPST
02442
       3041
                      DCA TEMPST+1
02443
       3042
                                        /SET VALUE OF
       2043
                      ISZ CNT1
02444
              REDO.
                                        /PARTIAL PRODUCT
                      JMP .+2
       5247
02445
                                       /ADD PARTIAL PRODUCT
                      JMP DADSTP
02446
       5262
       1042
                      TAD TEMPST+1
02447
                      RAL
      7004
02450
                      DCA TEMPST+1
02451
       3042
                      TAD TEMPST
02452
       1041
02453
       7004
                      RAL
                      DCA TEMPST
02454
       3041
                                        /CHECK FOR OVERFLOW
                      SNL
       7420
02455
                                        /NO, CONTINUE
                      JMP REDO
02456
       5244
                                        /YES. INCREMENT MSD
                      ISZ TEMPST+1
02457
       2042
                      CLL
02460
       7100
                      JMP REDO
02461
       5244
              DADSTP, TAD TEMPST
                                        /DOUBLE PRECISION ADD
02462
       1041
                      SWP
       7521
02463
       7200
                      CLA
02464
                      TAD TEMPST+1
       1042
02465
                      JMS I DAD
                                        /ADD ROUTINE
02466
       4551
                      HIGH
       0045
02467
                                        /STORE ROUTINE
                      JMS I
                              DST
02470
       4550
                      HIGH
02471
       0045
02472
       5223
                      JMP RETUR
02473
       0000
              ARGU.
                      0
              STORE,
                      0
       0000
02474
              TEST.
                      0
02475
       0000
                      0
02476
       0000
              MASK.
                                        /SUM OF SQUARES
       0000
              SUMS OR.
02477
                      CLA CLL
02500
       7300
                      TAD (4000
                                        /STORAGE ADDRESS
       1375
02501
                      DCA MSHSQR
       3317
02502
                      TAD (4000
       1375
02503
                      DCA MSHSQR+2
02504
       3321
                                        /RESET DATA LOCATOR
                      TAD (4000
       1375
02505
                      DCA DATLOC
02506
       3314
                                        /GET # DATA POINTS
                      TAD SUM2
02507
       1026
                      DCA CNTR1
02510
       3021
                                        /OVERFLOW COUNTERS
       1374
                      TAD (6000
02511
                      DCA CNTR2
02512
      3022
```

```
/SOUARE VALUE
02513
       4200
              SORSUM, JMS SOR
       4000
02514
             DATLOC, 4000
                      CDF 10
       6211
02515
                                       /DOUBLE PRECISION ADD
       4551
                      JMS I
                              DAD
02516
02517
       0000
             MS HS QR,
                      0
                                       /DOUBLE PRECISION STORE
                      JMS I
                              DST
02520
       4550
       0000
02521
             DUMB,
                      0
                      CDF 00
02522
       6201
                                       /TEST, OVERFLOW
                      SZL
02523
       7430
                                       YES. INCREMENT COUNTER
02524
       2422
                      ISZ I CNTR2
                      CLL
      7100
02525
                                       /RESET ADDRESS
                      ISZ CNTR2
02526
      2022
                      ISZ DATLOC
02527
       2314
                      ISZ MSHSQR
02530
      2317
02531
       2317
                      ISZ MSHSQR
                      ISZ MSHSQR+2
02532
       2321
                      ISZ MSHSQR+2
02533
      2321
                                       /MORE DATA ?
                      ISZ CNTR1
      2021
02534
                                       /YES, SQUARE & ADD
       5313
                      JMP SQRSUM
02535
                      JMP I SUMSQR
                                       /NO. RETURN
02536 5677
                                       /SUMMED SQUARES OUTPUT
             PUNSQR, 0
02537
       0000
02540
       7200
                      CLA
                      TAD (4000
02541
       1375
02542
      3351
                      DCA ADRSQR
                      TAD SUM2
02543
      1026
                      DCA CNTR1
02544
       3021
                      TAD (-7
      1373
             LOPS QR.
02545
                      DCA CNTR2
02546
       3022
02547
       7200
                      CLA
             INSQR.
                      JMS I
                              UDPRNT
02550
       4547
              ADRSQR, 0
02551
       0000
      4557
                      JMS I
                              SPACE
02552
                      ISZ ADRSOR
       2351
02553
02554
      2351
                      ISZ ADRSQR
                      ISZ CNTR1
02555
       2021
                      JMP .+2
02556
       5360
                      JMP ENDSOR
       5365
02557
                      ISZ CNTR2
02560
      2022
02561
       5347
                      JMP INSOR
       4566
                      JMS I
                              CRLF
02562
                      JMS I
                              ENDREC
02563
       4560
                      JMP LOPSQR
02564
       5345
             ENDSQR, JMS I
02565
       4566
                              CRLF
                      JMS I
                              ENDREC
02566
       4560
       5737
                      JMP I PUNSQR
02567
       7771
02573
       6000
02574
02575
       4000
```

```
02576
       0014
02577
       7764
       3000
             *3000
                      TEXT /STODAYS DATE /
0 3000
       4424
              MSG01,
03001
       1704
03002
       0131
03003
       2340
       0401
03004
03005
       2405
03006
       4000
              MSG02, TEXT / TIME (MILITARY) /
03007
       4040
03010
       2411
03011
       1505
       4050
03012
03013
       1511
       1411
03014
03015
       2401
03016
       2231
03017
       5140
03020
       0000
                       TEXT / $REPEAT PREVIOUS RUN 1-YES,
              MSG03,
03021
       4422
                            0-NO /
03022
       0520
03023
       0501
03024
       2440
03025
       2022
03026
       0526
03027
       1117
03030
       2523
03031
       4022
03032
       2516
03033
       4061
03034
       5531
       0523
03035
03036
       5440
03037
       6055
        1617
03040
03041
       4000
              MSGO 4, TEXT / $NUMBER OF WAVES IN BOMB /
       4416
03042
03043
       2515
03044
       0205
       2240
03045
       1706
03046
       4027
03047
03050
       0126
       0523
03051
       4011
03052
03053
       1640
       0217
03054
```

```
1502
03055
       4000
03056
              MSG05, TEXT / NUMBER OF PASSES /
03057
       4040
03060
       1625
       1502
03061
03062
       0522
03063
       4017
03064
       0640
       2001
03065
03066
       2323
03067
       0523
03070
       4000
                     TEXT /$FAST OR SLOW LUMINESCENCE
       4406
              MSGO6.
03071
                            O-FAST, 1-SLOW /
03072
       0123
       2440
03073
03074
       1722
03075
       4023
03076
       1417
03077
       2740
03100
       1425
10150
       1511
       1605
03102
03103
       2303
03104
       0516
03105
       0305
03106
       4060
03107
       5506
03110
       0123
03111
       2454
03112
       4061
03113
       5523
03114
       1417
03115
       2740
03116
       0000
              MSGO7. TEXT /$TRANSIENT DECAY 5.0 USEC-CNT
03117
       4424
                            INITIAL OFFSET 12.6 USEC /
       2201
03120
       1623
03121
03122
       1105
03123
       1624
03124
       4004
       0503
03125
03126
       0131
03127
       4065
03130
       5660
03131
       4025
03132
       2305
       0355
03133
03134
       0316
       2440
03135
       1116
03136
```

```
03137
       1124
03140
       1101
03141
       1440
03142
       1706
03143
       0623
03144
       0524
03145
       4061
03146
       6256
03147
       6640
03150
       2523
03151
       0503
       4000
03152
              MSGO8, TEXT /$# DATA POINTS /
03153
       4443
03154
       4004
03155
       0124
       0140
03156
       2017
03157
03160
       1116
03161
       2423
       4000
03162
                       TEXT / RANGE CODE 1-10, 2-100, 3-1000
              MSG09,
03163
       4040
                            MSEC /
03164
       2201
03165
       1607
       0540
03166
03167
       0317
03170
       0405
03171
       4061
03172
       5561
03173
       6054
03174
       4062
03175
       5561
03176
       6060
03177
       5440
03200
       6355
       6160
03201
03202
       6060
       4015
03203
03204
       2305
03205
       0340
03206
       0000
              MSG15, TEXT /$CONTINUE RUNS 1-YES, 0-NO /
       4403
03207
03210
       1716
03211
       2411
03212
       1625
       0540
03213
03214
       2225
       1623
03215
03216
       4061
       5531
03217
03220
       0523
```

03221 03222 03223 03224	6055 1617	
	6345 6455 6354 6346 6455 6344 6337 6331 6332 6333 6334 6336 6341 7701 7621	STBOX=6345 STATOD=6455 GETDAT=6354 INBOX=6346 INATOD=6455 XDABLE=6344 ROTROF=6342 CSTART=6337 CREADY=6331 NOW=6332 XON=6333 XOFF=6334 CWAIT=6336 XABLE=6343 ROTRON=6341 ACL=7701 CAM=7621
		\$
0C147 0C150 0C151 0C153 0C153 0C155 0C157 0C156 0C157 0C161 0C161 0C163 0C163 0C164 0C167 0C167 0C172 0C173 0C174 0C175 0C176 0C177	1200 1234 2000 0600 2537 1474 0723 1044	

100	1222	GETDAT	6354	PREP	1631	SUM	0037
ACC				PTR	2055	SUMDAT	1263
ACL	7701	GETDIG	0457		1474	SUMLUP	1273
ADD	2435	HIGH	0045	PUNCH			2477
AED1	1303	HIGHT	1262	PUNSQR	25 37	SUMSQR	
ADR	1505	INATOD	6455	PUN1	0031	SUM2	0026
ADRSQR	2551	INBOX	6346	RANGE	0035	TEMP	0525
ARG	1221	INLOP	1503	READ	1101	TEMPER	2054
ARGU	2473	INSQR	2547	REDO	2444	TEMPST	0041
BCMB	0254	ISTORE	0023	RESET	0203	TEST	2475
BCMB2	0304	KCDF	1220	RESET 1	1600	TESTA	1342
BYTCNT	0440	LEADER	1027	RETUR	2423	TESTBT	2417
CAM	7621	LIT1	0441	RETURN	0527	TIMPNT	1720
CHANG	1245	LIT2	0442	RLOOP	1636	TNEXT	1702
CHG	1211	LIT3	0443	ROTROF	6342	TYPELT	1064
CLEAR	0516	LIT4	0444	ROTRON	6341	UDADDR	2321
CNTR1	0021	LIT5	0445	RUNCNT	0032	UDARND	2264
CNTR2	0022	LOP	1501	SDADDR	0671	UDBOX	2327
CNT 1	0043	LOPIN	1533	SDARND	0634	UDCNT	2322
CNT2	0044	LOPSQR	2545	SDBOX	0701	UDCONL	2333
CCNTIN	1467	LOW	0046	SDCNT	0674	UDDO	2272
CCNVRT	0531	LUMIN	0033	SDCONL	0705	UDGET	2331
CREADY		MASK	2476	SDDO	0642	UDHIGH	2323
CRLF	1072	MDIGIT	0521	SDGET	0703	UDHSUB	2325
CETART	6337	MDOLAR	0450	SDHIGH	0675	UDLOOP	2320
	6336	MESAGE	0400	SDHSUB	0677	UDLOW	2324
CWAIT	1234	MESSY	2000	SDLOOP	0670	UDLSUB	2326
DAD			0530	SDLOG	0676	UDOUT	2310
LADSTP	2462	MNINE	0522	SDLSUB	0700	UDPRNT	2244
DATA	2200	MQM			0673	UDPTR	2332
DATLOC	2514	MSG01	3000	SDMNS	0660	UDTEML	2330
DATOUT	1400	MSG02	3007	SDOUT		XABLE	6343
DATPNT	1710	MSG03	3021	SDPLUS	0672		6344
DATPOT	0034	MSG04	3042	SDPRNT	0600	XDABLE	
DATTIM	1654	MSG05	3057	SDPTR	0704	XLOOP	1645
DCM	1223	MSG06	3071	SDTEML	0702	XOFF	6334
DEL	1021	MSG07	3117	SET1	0231	XON	6333
DELMIN	1351	MSG08	3153	SPACE	1044	ZLOOP	1615
DELRAN	0040	MSG09	3163	RQR	2400		
DELTIM	0030	MSG15	3207	SQRSUM	2513		
DEL1	2217	MSHPNT	1306	SSADDR	0762		
DEL2	2223	MSHSQR	2517	SSBOX	0766		
DEL3	2233	MSLASH	0526	SSCNT	0767		
DIGITS	0523	MULT	0313	SSCNTR	0765		
DIGLOC	0524	MULTI	0263	SSCON	0771		
DIGPTR	0010	N	0036	SSMNS	0764		
DNEXT	1665	NOW	6332	SSPLUS	0763		
DST	1.2 00	NUMGET	0451	SSPRNT	0723		
DUMB	2521	NUMWAV	0027	SSVAL	0770		
DUMMY	1310	P	0024	SSXYZ	0742		
ENDFIL	1000	PACK	0541	START	0200		
ENDREC	1053	PASS	0204	STATOD	6455		

ENDSQR	2565	PASSES	0025	STBOX	6345
ENDTAP	1521	PNTDAT	1711	STDEL	1347
ENT10	0401	PNTTIM	1721	STORE	2474
ENT11	0410	POINTS	0251	STOR 1	0446
ERROR	0511	POL	1552	STOR2	0447

ERRORS DETECTED: 0 LINKS GENERATED: 0

APPENDIX 5: JCL

JCL is the acronym for job control language. The listing which follows contains all the JCL statements required to run the job which calculates the experimental results. The sections where data and program source decks belong are indicated in the listing. The WYLBUR execute file, EXECTRS3 (see Appendix 6), moves the the proper data sets to the indicated positions when the job is created. The statements in the listing are applicable only to the Iowa State University Computation Center and are subject to change as system changes are implemented.

```
1 //A411GJO JOB A0099,GJO,TIME=(1,59)
   2 /*JOBPARM LINES=10
   3 //S1 EXEC PGM=IEBGENER
   4 //SYSPRINT DD SYSOUT=A
   5 //SYSIN DD DUMMY
   6 //SYSUT2 DD DSN=&CARDS1,UNIT=DISK,DISP=(NEW,PASS),
   7 // SPACE= (3520, (5,5), RLSE), DCB= (RECFM=FB, LRECL=80,
   8 // BLKSIZE=3520)
   9 //SYSUT1 DD *
     Control Variables
 180 /*
 801 //S2 EXEC PL1LFCLG, PARM. PL1L= A, X, NEST , REGION. GO=160K
 802 //PL1L.SYSIN DD *
     TRS3 Source Deck
 €03 /*
 804 //GO.SYSIN DD DSN=CPS07.A0986.GJ01,DISP=SHR
 805 //IN
                DD DSN=&CARDS1, DISP=(OLD, DELETE)
 E07 //OUT
                DD DSN=CPS07.A0986.GJ02,UNIT=DISK,
 808 // VOL=SER=RJEPAK, DISP=(NEW, KEEP, DELETE), SPACE=(3520,
 809 // (5,5)), DCB= (RECFM=FB, LRECL=80, BLKSIZE=3520)
 810 //GO.FT14F001 DD DSN=&SM, UNIT=SCRTCH, DISP=(NEW, PASS),
 E11 // SPACE=(800, (120, 15)), DCB=(RECFM=VS, LRECL=796,
 812 // BLKSIZE=800)
 813 //SIMPLTTR EXEC PLOT, PLOTTER=INCRMNTL, FORM=W
 E14 //S3 EXEC FORTG, REGION.GO=160K, TIME.GO=(2,00)
 E15 //FORT.SYSLIN DD DISP=(OLD, PASS)
 816 //FORT.SYSIN DD *
     SMASH Source Deck
 E17 //LKED.SYSLMOD DD DSN=&GOSET2(GO)
 E18 //GO.FT05F001 DD DSN=CPS07.A0986.GJ02,DISP=SHR,
 E19 // VOL=SER=RJEPAK, UNIT=2314
 820 //GO.FTO6F001 DD SYSOUT=A
 E21 //GO.FT14F001 DD DSN=&SM2,UNIT=SCRTCH,DISP=(NEW,PASS),
E22 // SPACE=(800, (120, 15)), DCB=(RECFM=VS, LRECL=796,
823 // BLKSIZE=800)
824 //SIMPLTTR EXEC PLOT, PLOTTER=INCRMNTL, FORM=W
825 //PLOT.FT14F001 DD DSN=&SM2
998 /*
999 //
1000
```

APPENDIX 6: EXECTRS3

EXECTRS3 is a WYLBUR execute file which creates the job which calculates the experimental results. The execute file starts with the JCL statements (Appendix 5), copies TRS3 (Appendix 1) and SMASH (Appendix 2) to the appropriate lines and interrogates the operator for input information. After the job is created the execute file submits the job to the computer system for execution and erases the original input data set in preparation for the next use of the execute file. The WYLBUR statements which make up the execute file are listed on the following pages.

```
10 SET EXEC NOL TER
 20 SET ESC :
 40 SET VOL CAT
 50 USE #JCL CLR
 60 COPY ALL FROM #TRS3 TO 802.001
 70 SCR $CPS07.A0986.GJ02 ON RJEPAK
 80 COMM HOW MANY RUNS?
 90 INS 11 UNN
100 REA VAL NO USING 11
110 COPY 1000 TO 12
120 SET VAL W0=12
130 SET VAL W1=13
140 SET VAL N1=0
150 SET VAL N1=N1+1
160 REA STR SO PRO 'IS RUN :N1 FAST OR SLOW?
170 SET VAL N9=2*:N1
180 IF (SO EQ 'FAST') EXEC 400
190 REA STR SO PRO WILL SMASH BE RUN?
200 IF (SO EQ 'NO') CH : N9/: N9 TO 0 IN : WO N
210 COPY 1000 TO : W1
220 REA STR S1 PRO 'GRAPH LABEL RUN : N1?
230 CH 1/20 TO ":S1" IN :W1 N
240 REA STR S1 PRO "DATA LABEL RUN :N1?
250 CH 21/40 TO ':S1' IN :W1 N
260 SET VAL W1=W1+1
270 IF (SO EQ 'YES') EXEC 450 SAVE
280 IF (N1 LT N0) EXEC 150
290 CCMM TO RUN JOB TYPE EXEC NEXT
300 EXEC PAUSE
310 IF (N2 NE 1) DEL 813/822
320 IF (N2 EQ 1) COPY ALL FROM #SMASH TO 816.001
350 RUN 1/999 UNN
351 SCR $CPS07.A0986.GJ03
360 EXEC PAUSE
400 CH : N9/: N9 TO 0 IN : WO N
410 EXEC 280
450 REA VAL N8 PRO *#SMASHES RUN :N1?
460 COPY 1000 TO : W1
470 CH 1 TO :N8 IN :W1 N
480 SET VAL W1=W1+1
490 SET VAL N2=1
500 CH : N9/: N9 TO 1 IN : WO N
510 SET VAL N3=0
520 SET VAL
            N3=N3+1
530 IF (N3 GT N8) EXEC RETURN
540 COPY 1000 TO : W1
550 IF (N3 EQ 1) CH 10/10 TO 0 IN :W1 N
560 IF (N3 NE 1) CH 9/10 TO -1 IN :W1 N
570 REA STR S1 PRO 'HOW MANY COMPONENTS SMASH :N3?
580 CH 5/5 TO ":S1" IN :W1 N
```

```
590 REA STR S1 PRO GRAPHS SMASH : N3?
600 IF (S1 EQ 'YES') EXEC 630
610 CH 15/15 TO 0 IN : W1 N
620 EXEC 660
630 REA STR S1 PRO 'LIN=LINEAR, LOG=SEMILOG
640 IF (S1 EQ 'LIN') CH 15/15 TO 1 IN :W1 N
650 IF (S1 EQ 'LOG') CH 14/15 TO -1 IN :W1 N
660 SET VAL W2=W1
670 SET VAL W1=W1+1
680 REA STR S1 PRO PRINTED OUTPUT HEADING?
690 COPY 1000 TO :W1
700 CH 1/80 TO ':51' IN :W1 N
710 SET VAL W1=W1+1
720 REA VAL W9 USING :W2 COLS 15/15
730 IF (W9 EQ 0) EXEC 840
740 COPY 1000 TO : W1
750 REA STR S1 PRO 'X-AXIS LABEL?
760 CH 1/20 TO ":S1" IN :W1 N
770 REA STR S1 PRO "Y-AXIS LABEL?
780 CH 21/40 TO ':S1' IN :W1 N
790 REA STR S1 PRO 'GRAPH LABEL?
800 CH 41/60 TO ':S1' IN :W1 N
810 REA STR S1 PRO 'DATA LABEL?
820 CH 61/80 TO ':S1' IN :W1 N
830 SET VAL W1=W1+1
840 COPY 1000 TO : 11
850 SET VAL N4=0
860 REA VAL N5 USING :W2 COL 5/5
870 SET VAL N4= N4+1
880 SET VAL N6=N4*10-9
890 SET VAL N7=N4*10
900 REA STR S1 PRO 'DECAY CONSTANT FOR COMPONENT : N4 .
910 CH: N6/: N7 TO ":S1" IN: W1 N
920 IF (N4 LT N5) EXEC 870
930 SET VAL W1=W1+1
```

940 EXEC 520